首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

2.
Several β-carbonic anhydrases (CAs, EC 4.2.1.1) are present in all land plants examined thus far. Here we report the first detailed biochemical characterization of one such isoform, FbiCA 1, from the C4 plant Flaveria bidentis, which was cloned, purified and characterized as recombinant protein. FbiCA 1 has an interesting CO2 hydrase catalytic activity (kcat of 1.2 × 105 and kcat/Km of 7.5 × 106 M?1 × s?1) and was moderately inhibited by most simple/complex inorganic anions. Potent FbiCA 1 inhibitors were also detected, such as trithiocarbonate, diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid (KIs in the range of 4–60 μM). Such inhibitors may be used as tools to better understand the role of various β-CA isoforms in photosynthesis.  相似文献   

3.
The Rv3588c gene product of Mycobacterium tuberculosis, a β-carbonic anhydrase (CA, EC 4.2.1.1) denominated here mtCA 2, shows the highest catalytic activity for CO2 hydration (kcat of 9.8 × 105 s?1, and kcat/Km of 9.3 × 107 M?1 s?1) among the three β-CAs encoded in the genome of this pathogen. A series of sulfonamides/sulfamates was assayed for their interaction with mtCA 2, and some diazenylbenzenesulfonamides were synthesized from sulfanilamide/metanilamide by diazotization followed by coupling with amines or phenols. Several low nanomolar mtCA 2 inhibitors have been detected among which acetazolamide, ethoxzolamide and some 4-diazenylbenzenesulfonamides (KIs of 9–59 nM). As the Rv3588c gene was shown to be essential to the growth of M. tuberculosis, inhibition of this enzyme may be relevant for the design of antituberculosis drugs possessing a novel mechanism of action.  相似文献   

4.
Kinetics of microperoxidase-11 (MP-11) as a heme–peptide enzyme model in oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied in the presence of amino acids, taking into account the inactivation of MP-11 during reaction by its suicide substrate, H2O2. Reliability of the kinetic equation was evaluated by non-linear mathematical fitting. Fitting of experimental data into a new integrated kinetic relation showed a close match between the kinetic model and the experimental data. Indeed, it was found that the mechanism of suicide-peroxide inactivation of MP-11 in the presence of amino acids is different from MP-11 and/or horseradish peroxidase. In this mechanism, amino acids compete with hydrogen peroxide for the sixth co-ordination position of iron atom in the heme group through a competitive inhibition mechanism.The proposed model can successfully determine the kinetic parameters including inactivation by hydrogen peroxide as well as the inhibitory rate constants by the amino acid inhibitor.Kinetic parameters of inactivation including the initial activity of MP-11, α0, the apparent inactivation rate constant, ki and the apparent inhibition rate constant for cysteine, kI were obtained 0.282 ± 0.006 min?1, 0.497 ± 0.013 min?1 and 1.374 ± 0.007 min?1 at [H2O2] = 1.0 mM, 27 °C, phosphate buffer 5.0 mM, pH 7.0. Results showed that inactivation and inhibition of microperoxidase as a peroxidase model enzyme occurred simultaneously even at low concentrations of hydrogen peroxide (0.4 mM). This kinetic analysis based on the suicide-substrate inactivation of microperoxidase-11, provides a tool and model for studying peroxidase models in the presence of reversible inhibitors. The introduced inhibition procedure can be used in designing activity tunable and specific protected enzyme models in the hidden and reversibly inhibited forms, which do not undergo inactivation.  相似文献   

5.
The energy conservation and number of viable cells of Nitrosomonas europaea fluctuate dramatically during cultivation. In discontinuous culture the specific activity (SA) reaches its maximum after 9 h with about 2700 nmol O2 (mg protein)?1 min?1, where the highest number of viable N. europaea cells is detectable after 21 h with 2 × 108 cell ml?1. Afterwards, both SA and viable cell number immediately start to decrease. Accordingly, the exponential growth turns into a linear growth, whereby the number of viable cells permanently decreases. The exponential growth phase can be extended from about 21 to 38 h by increasing the concentration of CO2 or trace elements. In continuous fermentation of N. europaea, SA of about 2500 nmol O2 (mg protein)?1 min?1 and viable cell number of 2.5 × 108 cell ml?1 is detectable at dilution rates between 1 and 1.8 day?1. At dilution rates below 1 day?1, SA and number of viable cells are reduced. The minimal doubling time is 13 and 15 h during continuous and discontinuous fermentation, respectively. Consequently, cell production of N. europaea should be performed in continuous fermentation. When bacteria are grown in discontinuous systems, they should be harvested in the early exponential growth phase.  相似文献   

6.
A β-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA 1, has been cloned, purified characterized kinetically and for inhibition with a series of water soluble glycosylated sulfanilamides. bsCA 1 has appreciable activity as catalyst for the hydration of CO2 to bicarbonate, with a kcat of 6.4 × 105 s?1 and kcat/Km of 3.9 × 107 M?1 s?1. All types of inhibitory activities have been detected, with KIs in the range of 8.9–110 nM. The best bsCA 1 inhibitor were the galactose and ribose sulfanilamides, with inhibition constants of 8.9–9.2 nM. Small structural changes in the sugar moiety led to dramatic differences of enzyme inhibitory activity for this series of compounds. One of the tested glycosylsulfonamides and acetazolamide significantly inhibited the growth of the bacteria in cell cultures.  相似文献   

7.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

8.
N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.  相似文献   

9.
The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2′-deoxycytidine for uridine and 2′-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn2+-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: Km = 1004 μM and kcat = 4.8 s?1 for cytidine, and Km = 1059 μM and kcat = 3.5 s?1 for 2′-deoxycytidine. The pH dependence of kcat and kcat/KM for cytidine indicate that protonation of a single ionizable group with apparent pKa value of 4.3 abolishes activity, and protonation of a group with pKa value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 Å resolution. Analysis of the crystallographic structure indicated the presence of a Zn2+ coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold.  相似文献   

10.
Anoxic subsurface flow (SSF) constructed wetlands were evaluated for denitrification using nitrified wastewater. The treatment wetlands utilized a readily available organic woodchip-media packing to create the anoxic conditions. After 2 years in operation, nitrate removal was found to be best described by first-order kinetics. Removal rate constants at 20 °C (k20) were determined to be 1.41–1.30 d?1, with temperature coefficients (θ) of 1.10 and 1.17, for planted and unplanted experimental woodchip-media SSF wetlands, respectively. First-order removal rate constants decreased as length of operation increased; however, a longer-term study is needed to establish the steady-state values. The hydraulic conductivity in the planted woodchip-media SSF wetlands, 0.13–0.15 m/s, was similar to that measured in an unplanted gravel-media SSF control system.  相似文献   

11.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

12.
In an effort to prepare a fluorogenic substrate to be used in activity assays with metallo-β-lactamases, (6R,7R)-8-oxo-7-(2-oxo-2H-chromene-3-carboxamido)-3-((4-(2-oxo-2H-chromene-3-carboxamido)-phenylthio)methyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (CA) was synthesized and characterized. CA exhibited a fluorescence quantum yield (φ) of 0.0059, two fluorescence lifetimes of 3.63 × 10?10 and 5.38 × 10?9 s, and fluorescence intensity that is concentration-dependent. Steady-state kinetic assays revealed that CA is a substrate for metallo-β-lactamases (MβLs) L1 and CcrA, exhibiting Km and kcat values of 18 μM and 5 s?1 and 11 μM and 17 s?1, respectively.  相似文献   

13.
Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates of 80, 160 and 320 mm d?1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2–20.2 kg dry matter m?2 year?1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320 mm d?1 the effluent quality was unacceptable and hydraulic problems appeared. Mass removal rates and removal rate constants were much higher than reported in other studies probably because of the high-strength wastewater, the high loading rates and the tropical conditions. Planted systems removed pollutants much more efficiently than the unplanted controls. Direct plant uptake constituted only up to 8% of the total-N removal and 2% of the P removal at the lowest loading rate, and was quantitatively of low importance compared to other removal processes. The significant effects of plants were therefore related more to their indirect effects on the removal processes. This study for the first time documents that S. sesban can be used in constructed wetland systems for the treatment of polluted water while at the same time producing a valuable N rich biomass that can be used for animal fodder or soil amendment.  相似文献   

14.
The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a β-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically and investigated for its inhibition with a series of sulfonamides and one sulfamate. The enzyme showed high CO2 hydrase activity, with a kcat of 9.4 × 105 s?1, and kcat/KM of 9.8 × 107 M?1 s?1. Simple benzenesulfonamides substituted in 2-, 4- and 3,4-positions of the benzene ring with amino, alkyl, halogeno and hydroxyalkyl moieties were weak scCA inhibitors with KIs in the range of 0.976–18.45 μM. Better inhibition (KIs in the range of 154–654 nM) was observed for benzenesulfonamides incorporating aminoalkyl/carboxyalkyl moieties or halogenosulfanilamides; benzene-1,3-disulfonamides; simple heterocyclic sulfonamides and sulfanilyl-sulfonamides. The clinically used sulfonamides/sulfamate (acetazolamide, ethoxzolamide, methazolamide, dorzolamide, topiramate, celecoxib, etc.) generally showed effective scCA inhibitory activity, with KIs in the range of 82.6–133 nM. The best inhibitor (KI of 15.1 nM) was 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. These inhibitors may be useful to better understand the physiological role of β-CAs in yeast and some pathogenic fungi which encode orthologues of the yeast enzyme and eventually for designing novel antifungal therapies.  相似文献   

15.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

16.
15N-labelled NO3? was used in a surface-flow constructed wetland in spring to examine the relative importance of competing NO3? removal processes. In situ mesocosms (0.25 m2) were dosed with 2 l of 15NO3? (NaNO3, 300 mg N l?1, 99 atom% 15N) and bromide (Br?) solution (LiBr, 4.3 g l?1, as a conservative tracer). Concentrations of NO3?, Br?, dissolved oxygen and 15N2 were monitored periodically and replicate mesocosms were destructively sampled prior to and 6 days after 15N addition. Denitrification, immobilisation, plant uptake and dissimilatory NO3? reduction to NH4+ (DNRA) accounted for 77, 11, 9 and 2% of 15NO3? transformed during the experiment. Only 6% of denitrification gases were directly measured as atmospheric or dissolved 15N2; the remainder (71%) was determined via 15N mass balance. This indicated that a large proportion of the denitrification gases were entrapped within the soil matrix and/or plant aerenchyma. The floating plant Lemna minor exhibited a significantly higher NO3? uptake rate (221 mg kg?1 d?1) than Typha orientalis (10 mg kg?1 d?1), but periodic harvest of plants would remove <3% of annual NO3? inputs. Our results suggest that this 6-year-old constructed wetland functions effectively as a sink for NO3? during the growing season with less than one-quarter of the NO3? processed sequestered into wetland plant, algal and microbial N pools and the balance permanently removed by denitrification.  相似文献   

17.
The ability of vertical flow (VF) constructed wetland systems to treat high-strength (ca. 300 mg L?1 of COD and ca. 300 mg L?1 total-nitrogen) wastewater under tropical climatic conditions was studied during a 5-month period. Nine 0.8-m diameter experimental VF units (depth 0.6 m) were used: three units were planted with Typha angustifolia L., another three units were planted with Cyperus involucratus Rottb and three units were unplanted. Each set of units were operated at hydraulic loading rates (HLRs) of 20, 50 and 80 mm d?1. Cyperus produced more shoots and biomass than the Typha, which was probably stressed because of lack of water. The high evapotranspirative water loss from the Cyperus systems resulted in higher effluent concentrations of COD and total-P, but the mass removal of COD did not differ significantly between planted and unplanted systems. Average mass removal rates of COD, TKN and total-P at a HLR of 80 mm d?1 were 17.8, 15.4 and 0.69 g m?2 d?1. The first-order removal rate constants at a HLR of 80 mm d?1 for COD, TKN and total-P were 49.8, 30.1 and 13.5 m year?1, respectively, which is in the higher range of k-values reported in the literature. The oxygen transfer rates were ca. 80 g m?2 d?1 in the planted systems as opposed to ca. 60 g m?2 d?1 in the unplanted systems. The number of Nitrosomonas was two to three orders of magnitude higher in the planted systems compared to the unplanted systems. Planted systems thus had significantly higher removal rates of nitrogen and phosphorus, higher oxygen transfer rates, and higher quantities of ammonia-oxidizing bacteria. None of the systems did, however, fully nitrify the wastewater, even at low loading rates. The vertical filters did not provide sufficient contact time between the wastewater and the biofilm on the gravel medium of the filters probably because of the shallow bed depth (0.6 m) and the coarse texture of the gravel. It is concluded that vertical flow constructed wetland systems have a high capacity to treat high-strength wastewater in tropical climates. The gravel and sand matrix of the vertical filter must, however, be designed in a way so that the pulse-loaded wastewater can pass through the filter medium at a speed that will allow the water to drain before the next dose arrives whilst at the same time holding the water back long enough to allow sufficient contact with the biofilm on the filter medium.  相似文献   

18.
We assessed the effect of growth at either 400 μmol mol?1 (ambient) or 1000 μmol mol?1 (elevated) CO2 and 0 g L?1 (deprivation) or 30 g L?1 (supplementation) sugar on morphological traits, photosynthetic attributes and intrinsic elements of the CAM pathway using the CAM orchid Phalaenopsis ‘Amaglade’. The growth of shoot (retarded) and root (induced) was differently affected by CO2 enrichment and mixotrophic regime (+sugar). The Fv/Fm ratio was 14% more in CO2-enriched treatment than at ambient level during in vitro growth. At elevated level of CO2 and sugar treatment, the content of Chl(a + b), Chl a/b and Chl/Car was enhanced while carotenoid content remained unaltered. During in vitro growth, gas-exchange analysis indicated that increased uptake of CO2 accorded with the increased rate of transpiration and unchanged stomatal conductance at elevated level of CO2 under both photo- and mixotrophic growth condition. At elevated level of CO2 and sugar deprivation, activities of Rubisco (26.4%) and PEPC (74.5%) was up-regulated. Among metabolites, the content of sucrose and starch was always higher under CO2 enrichment during both in vitro and ex vitro growth. Our results indicate that plantlets grown under CO2 enrichment developed completely viable photosynthetic apparatus ready to be efficiently transferred to ex vitro condition that has far-reaching implications in micropropagation of Phalaenopsis.  相似文献   

19.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

20.
《Process Biochemistry》2014,49(12):2114-2121
The codon-optimized carbonic anhydrase gene of Persephonella marina EX-H1 (PMCA) was expressed and characterized. The gene with the signal peptide removed, PMCA(sp−), resulted in the production of approximately five times more purified protein than from the intact gene PMCA using an Escherichia coli expression system. PMCA(sp−) is formed as homo-dimer complex. PMCA(sp−) has a wide pH tolerance (optimum pH 7.5) and a high thermostability even at 100 °C (88 min of thermal deactivation half-life). The melting temperature for PMCA(sp−) was 84.5 °C. The apparent kcat and Km values for CO2 hydration were 3.2 × 105 s−1 and 10.8 mM. The activity of the PMCA(sp−) enzyme was enhanced by Zn2+, Co2+, and Mg2+, but was strongly inhibited by Cu2+, Fe3+, Al3+, Pb2+, Ag+, and Hg2+. PMCA(sp−) readily catalyzed the hydration of CO2, precipitating CaCO3 as calcite in the presence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号