首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

2.
One method for managing livestock-wastewater N is the use of treatment wetlands. The objectives of this study were to (1) assess the magnitude of denitrification enzyme activity (DEA) in the suspended sludge layers of bulrush and cattail treatment wetlands, and (2) evaluate the impact of nitrogen pretreatment on DEA in the suspended sludge layer. The study used four wetland cells (3.6 m × 33.5 m) with two cells connected in series. Each wetland series received either untreated or partially nitrified swine wastewater from a single-cell anaerobic lagoon. The DEA of the suspended sludge layers of the constructed wetlands was measured by the acetylene inhibition method. The control DEA treatment for the sludge layer had a mean rate of 18 μg N2O-N g?1 sludge h?1. Moreover, the potential DEA (nitrate-N and glucose-C added) mean was very large, 121 μg N2O-N g?1 sludge h?1. These DEA rates are consistent with the previously reported high levels of nitrogen removal by denitrification from these wetlands, especially when the wastewater was partially nitrified. Stepwise regression using distance within the wetland, wastewater nitrate, and wastewater ammonia explained much of the variation in DEA rates. In both bulrush and cattail wetlands, there were zones of very high potential DEA.  相似文献   

3.
Constructed treatment wetlands have served the City of Columbia, MO, for fourteen years. Four free water surface wetland units in series, comprised of 23 cells, are an addition to the activated sludge wastewater treatment plant, for the purpose of added biochemical oxygen demand (BOD) and total suspended solids (TSS) control. The system operates year-round, and supplies water to the Eagle Bluffs Conservation Area for wetland maintenance. The cattail wetlands processed an average of 57,000 m3/d, at a water depth of 20 cm. The resulting detention time was approximately 2 days, and the hydraulic loading was 13 cm/d. Water temperatures were warm leaving the treatment plant and in the wetlands in winter, because of the short detention. The period of record average carbonaceous biochemical oxygen demand (CBOD) leaving the wetlands was 5.0 mg/L, and the TSS was 14.7 mg/L. Dissolved oxygen was depressed in summer, likely because of the high sediment demand. Nutrient concentrations were only minimally reduced, total nitrogen (TN) by 22% and total phosphorus (TP) by 6%. However, load reductions were maximal, 98 t/yr for nitrogen, and 3.6 t/yr for phosphorus. Fecal coliforms were reduced by 98%, and E. coli by 95%. First order rate coefficients were high for CBOD (64 m/yr), nitrate (61 m/yr) and organic nitrogen (42 m/yr), but relatively low for ammonia (8 m/yr) and phosphorus (5.7 m/yr). Nitrogen removal was strongly affected by vegetative uptake. Sediment accretion in the wetland inlets was substantial, at 1.6 cm/yr in the inlets to the upstream wetland units. Muskrats caused vegetation damage, and waterfowl use was high in winter, causing TSS excursions.  相似文献   

4.
《Ecological Engineering》2005,24(3):185-198
In 2001, to foster the practical development of constructed wetlands (CWs) used for domestic wastewater treatment in Turkey, vertical subsurface flow constructed wetlands (30 m2 of each) were implemented on the campus of the METU, Ankara, Turkey. The main objective of the research was to quantify the effect of different filter media on the treatment performance of vertical flow wetlands in the prevailing climate of Ankara. Thus, a gravel-filled wetland and a blast furnace granulated iron slag-filled wetland were operated identically with primarily treated domestic wastewater (3 m3 d−1) at a hydraulic loading rate of 0.100 m d−1, intermittently. Both of the wetland cells were planted with Phragmites australis. According to the first year results, average removal efficiencies for the slag and gravel wetland cells were as follows: total suspended solids (TSS) (63% and 59%), chemical oxygen demand (COD) (47% and 44%), NH4+–N (88% and 53%), total nitrogen (TN) (44% and 39%), PO43−-P (44% and 1%) and total phosphorus (TP) (45% and 4%). The treatment performances of the slag-filled wetland were better than that of the gravel-filled wetland in terms of removal of phosphorus and production of nitrate. Since this study was a pioneer for implementation of subsurface constructed wetlands in Turkey using local sources, it has proved that this eco-technology could also be used effectively for water quality enhancement in Turkey.  相似文献   

5.
Anoxic subsurface flow (SSF) constructed wetlands were evaluated for denitrification using nitrified wastewater. The treatment wetlands utilized a readily available organic woodchip-media packing to create the anoxic conditions. After 2 years in operation, nitrate removal was found to be best described by first-order kinetics. Removal rate constants at 20 °C (k20) were determined to be 1.41–1.30 d?1, with temperature coefficients (θ) of 1.10 and 1.17, for planted and unplanted experimental woodchip-media SSF wetlands, respectively. First-order removal rate constants decreased as length of operation increased; however, a longer-term study is needed to establish the steady-state values. The hydraulic conductivity in the planted woodchip-media SSF wetlands, 0.13–0.15 m/s, was similar to that measured in an unplanted gravel-media SSF control system.  相似文献   

6.
In Egypt, disposing of partially treated or untreated domestic and industrial wastewater into agricultural drains deteriorates their water quality. A growing interest in effective low-cost treatment of polluted water and wastewater has resulted in many studies on constructed wetlands.This study evaluates free water surface constructed wetlands (by far the largest application project is named “Lake Manzala Engineered Wetland [Egypt]”) utilized to improve the water quality in Bahr El Baqar drain, which is located at the northeastern edge of the Nile Delta. This drain discharges its water into Manzala Lake, which in turn has many fishing activities and is connected to the Mediterranean Sea. The full capacity of the constructed wetland system is 25,000 m3/day. Three various flow rate wetlands were investigated; five wetland beds of high flow rate of 0.344 m3/m2-day, five wetland beds of low flow rate of 0.048 m3/m2-day and reciprocated cells of flow of 500 m3/day.The concentrations of different contaminants along the constructed wetlands system were measured to determine the treatment efficiency. The effluent was compared with the Egyptian standards of water quality in agricultural drains (Law 48/1982). Due to the high percentage of the agricultural water drain, the concentrations of contaminants in the influent were relatively low. The percentages of removal for the different contaminants were BOD5: 52%, COD: 50%, TSS: 87%, TDS: 32%, NH4-N: 66%, PO4: 52%, Fe: 51%, Cu: 36%, Zn: 47% and Pb: 52%. The natural vegetation considerably increased the value of dissolved oxygen in the treated effluent. There were little differences in the removal efficiency between the high and low flow rates beds in the system.  相似文献   

7.
Simple technologies that remove nitrate from effluents and other point discharges need to be developed to reduce pollution of receiving waters. Denitrification beds are lined containers filled with organic carbon (typically wood chip or coarse sawdust) and are a technology that is proving promising. Water containing NO3? (treated effluent or agricultural drainage) is passed through the bed and the wood chips act as an energy source for denitrifying bacteria that convert NO3? to N gases. There are few data on the efficiency of NO3 removal in large-scale beds. We report here NO3? removal results from three large denitrification beds with volumes of 83, 294, and 1320 m3 treating dairy shed effluent, treated domestic effluent and glasshouse effluent, respectively. Nitrate was nearly completely removed from the dairy shed effluent (annual load of 31 kg N) and domestic effluent (annual load 365 kg N). In these beds, NO3? removal, presumably by denitrification, was limited by NO3? concentration. However, the bed treating glasshouse effluent was overwhelmed by very high NO3? concentration (about 250 g N m?3) and high flow rates (about 150 m3 d?1) but still reduced NO3? concentration to about 150 g N m?3. For this bed, long-term NO3? removal was between 5 and 10 g N m?3 of bed material when NO3? was non-limiting and was similar to rates reported for other smaller denitrification beds. As expected, organic N, ammonium and phosphorus were not removed from any of the effluents following passage through the beds. Our results suggest that denitrification beds are a relatively inexpensive system to construct and operate, and are suitable for final treatment of a range of NO3?-laden effluents.  相似文献   

8.
The treatment capacity of constructed wetlands is expected to be high in tropical areas because of the warm temperatures and the associated higher rates of microbial activity. A pilot scale horizontal subsurface flow constructed wetland system filled with river sand and planted with Phragmites vallatoria (L.) Veldkamp was set up in the southern part of Vietnam to assess the treatment capacity and the removal rate kinetics under tropical conditions. The system received municipal wastewater at four hydraulic loading rates (HLRs) of 31, 62, 104 and 146 mm day?1. Removals of TSS, BOD5 and COD were efficient at all HLRs with mean removal rates of 86–95%, 65–83% and 57–84%, respectively. Removals of N and P decreased with HLRs and were: NH4-N 0–91%; TN 16–84% and TP 72–99%. First-order area-based removal rate constants (k, m year?1) estimated from sampling along the length of the wetland from inlet to outlet at the four HLRs were in the range of 25–95 (BOD5), 22–30 (COD), 31–115 (TSS), 5–24 (TN and TKN) and 41–84 (TP) at background concentrations (C*) of 5, 10, 0, 1.5 and 0 mg L?1, respectively. The estimated k-values should not be used for design purposes, as site-specific differences and stochastic variability can be high. However, the study shows that domestic wastewater can be treated in horizontal subsurface flow constructed wetland systems to meet even the most stringent Vietnamese standards for discharge into surface waters.  相似文献   

9.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

10.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

11.
The anammox process, under different organic loading rates (COD), was evaluated using a semi-continuous UASB reactor at 37 °C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 ± 4.9% for diluted UASB-post-digested effluent (95 mg COD L?1) and up to 98.5 ± 0.8% for diluted partially oxidized effluent (121 mg COD L?1). Mass balance clearly showed that an increase in organic loading (from 95 mg COD L?1 to 237 mg COD L?1 and from 121 mg COD L?1 to 290 mg COD L?1 for the UASB-post-digested effluent and the partially oxidized effluent, respectively) negatively affected the anammox process and facilitated heterotrophic denitrification. Partial oxidation as a pre-treatment method improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L?1 of UASB-post-digested effluent and 242 mg COD L?1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80%). However, COD concentrations above 237 mg L?1 (loading rate of 112 mg COD L?1 day?1) for post-digested effluent and above 290 mg L?1 (loading rate of 136 mg COD L?1 day?1) for partially oxidized effluent resulted in complete cease of ammonium removal. Results obtained showed that, denitrification and anammox process were simultaneously occurring in the reactor. Denitrification became the dominant ammonium removal process when the COD loading was increased.  相似文献   

12.
This study evaluates the potential of subsurface flow (SSF) constructed wetlands (CWs) for tertiary treatment of wastewater at four shorter HRTs (1–4 days). The CWs were planted with Typha angustata, which was observed in our earlier study to be more efficient than Phragmites karka and Scirpus littoralis. The CWs comprised four rectangular treatment cells (2.14 m × 0.76 m × 0.61 m) filled with layers of gravel of two different sizes (approximately 2.5 cm and 1.5 cm diameter) to a depth of 0.61 m. The inflow rates of the secondary effluent in the four cells were accordingly fixed at 300 L d?1, 150 L d?1, 100 L d?1 and 75 L d?1, respectively, for 1, 2, 3 and 4 days HRT. The hydraulic loads ranged between 59.05 mm d?1 and 236.22 mm d?1.The wastewater inflow into the CW system as well as the treated effluent were analyzed, using standard methods, at regular intervals for various forms of nitrogen (NH4-N, NO3-N and TKN), orthophosphate-P and organic matter (BOD and COD) concentrations over a period of five weeks after the development of a dense stand.The higher HRT of 4 days not only helped maximum removal of all the pollutants but also maintained the stability of the treatment efficiency throughout the monitoring period. For the nutrients (NH4-N, NO3-N and TKN), HRT played a more significant role in their removal than in case of organic matter (BOD3 and COD). More than 90% of NO3-N and TKN and 100% of NH4-N were removed from the wastewater at 4 days HRT.At lower HRTs, the mass loading rate was higher with greater fluctuation. However mass reduction efficiency of the T. angustata CW for all forms of nitrogen was >80% with the HRTs of 2, 3 and 4 days.  相似文献   

13.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

14.
Five emergent plant species were compared for their effectiveness in treating contaminants in a wetland system constructed on a military base in El Salvador. The system consisted of the subsurface flow (SSF), open water (OW) and free surface flow (SF) wetlands with a combined flow capacity of up to 151.4 m3 d?1. Reliability and consistent performance in extreme conditions, such as those occurring during the tropical dry or wet seasons were important evaluation criteria. The discontinuous flow patterns typical of tropical climates necessitated the use of water balance calculations using climatic data such as rainfall and evapotranspiration. System characterization was achieved by computation of daily input and output mass loading rates for each individual constituent. Results suggest that Phragmites and Brachiaria were the most effective plants in SSF wetland. Brachiaria provided the added benefit of serving as a source of fodder and proved proficient, with N and P uptakes of 1.5–3.14% and 0.17–0.25% per dry plants’ biomass, respectively. Typha yielded the highest dry season removal efficiency within the SF (BOD5: 80.78 ± 9.35%, COD: 65.18 ± 19.6%, TN: 58.59 ± 19.3%, oil and grease: 78.34 ± 10.55%, total dissolved phosphorus: 66.5 ± 20.7%). PhragmitesTypha treatment subset performed better year-round than either ThaliaThalia or BrachiariaCyperus. Evaluated plants were capable of surviving and proliferating in extreme tropical climates.  相似文献   

15.
Two demonstration treatment wetland systems were studied for over four years. Both consisted of sedimentation basins, followed by wetland cells. The Imperial, CA system had four wetland cells totaling 4.7 ha, 25% vegetated with bulrushes (Schoenoplectus californicus), and the Brawley, CA system had two wetland cells totaling 1.8 ha, also 25% vegetated with bulrushes. Imperial received irrigation runoff water at 30 cm/day, and Brawley received New River water at 11 cm/day, both with moderately high levels of nutrients, sediments and pathogens. The systems seeped 40–60% of the incoming water. The hydraulic efficiencies of the systems were high because of compartmentalization and high aspect ratios. Concentration reductions of TN, TP and TSS were 50%, 39%, and 97% at Imperial, and 73%, 50% and 96% at Brawley. Imperial achieved about 1.5 log10 reductions in total coliforms, fecal coliforms and Escherichia coli, while Brawley achieved about 2.7 log10 reductions. The sedimentation basins settled most of the incoming TSS, as well as the algal solids that were generated in the basins. Algal uptake removed nutrients in the basins, which were supersaturated with oxygen. The wetlands were effective in denitrification, and trapped the remaining and generated TSS. Removal rate constants, corrected for infiltration, were at the high end of those reported for other wetlands.  相似文献   

16.
Rural areas of developing countries require low-cost treatment systems to purify wastewater which is contaminated with pesticides and organic matter. This work evaluated for six months the simultaneous removal of chlorpyrifos and dissolved organic matter in water using four horizontal sub-surface flow constructed wetlands (SSFCW) at a pilot scale, that were planted with Phragmites australis at 20 ± 2 °C water temperature. In each wetland, three concentrations of chlorpyrifos and three of dissolved organic carbon (DOC) were tested by liquid chromatography and an organic carbon analyzer respectively. The pesticide and DOC were added to the wetlands in synthetic wastewater. For the experiments, four wetlands of equal dimensions were used, with granular material of igneous rocks, 3.9–6.4 mm in diameter and at a depth of 0.3 m with a layer of water 0.2 m deep. For each treatment, regular sampling was carried out for the influent and effluents. As a supporting feature NH4+, NO3? and PO43? were quantified and in situ measurements of dissolved oxygen (DO), pH, electrical conductivity, water temperature and redox potential were taken. The overall removal of the chlorpyrifos (92.6%) and DOC (93.2%) was high, as was DOC removal as a function of pesticide concentration in the influent. The minimum magnitude (92.0%) was reached with 425.6 μg L?1 of chlorpyrifos and, with the highest pesticide removal (96.8%). At lower concentrations of the agrochemical, DOC removal increased. The removals were possibly due to mineralization processes, biological decomposition and sorption in plants. These findings demonstrate that SSFCW are capable of simultaneously removing dissolved organic matter and organophosphate pesticides such as chlorpyrifos, which indicate that chlorpyrifos did not interfere with the removal of organic material.  相似文献   

17.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

18.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

19.
Nitrate-nitrogen retention in wetlands in the Mississippi River Basin   总被引:1,自引:0,他引:1  
《Ecological Engineering》2005,24(4):267-278
Nitrate-nitrogen retention as a result of river water diversions is compared in experimental wetland basins in Ohio for 18 wetland-years (9 years × 2 wetland basins) and a large wetland complex in Louisiana (1 wetland basin × 4 years). The Ohio wetlands had an average nitrate-nitrogen retention of 39 g-N m−2 year−1, while the Louisiana wetland had a slightly higher retention of 46 g-N m−2 year−1 for a similar loading rate area. When annual nitrate retention data from these sites are combined with 26 additional wetland-years of data from other wetland sites in the Basin Mississippi River (Ohio, Illinois, and Louisiana), a robust regression model of nitrate retention versus nitrate loading is developed. The model provides an estimate of 22,000 km2 of wetland creation and restoration needed in the Mississippi River Basin to remove 40% of the nitrogen estimated to discharge into the Gulf of Mexico from the river basin. This estimated wetland restoration is 65 times the published net gain of wetlands in the entire USA over the past 10 years as enforced by the Clean Water Act and is four times the cumulative total of the USDA Wetland Reserve Program wetland protection and restoration activity for the entire USA.  相似文献   

20.
《Ecological Engineering》2005,24(3):219-232
Water pollution by agriculture can include inappropriately managed dairy farmyard dirty water. In Ireland, dairy farmyard dirty water includes farmyard runoff, parlour washings, and silage/farmyard manure effluents. The objectives of this study were to determine (i) the quality and quantity of dirty water generated at a farm-scale and (ii) the seasonal effectiveness of a constructed wetland to treat farmyard dirty water. The wetland system was 4800 m2 in area and treated dirty water from a 42-cow organic dairy unit with an open yard area of 2031 m2. Monthly dirty water inflow rate to the wetland ranged between 3.6 and 18.5 m3 d−1. Farmyard dirty water accounted for 27% of hydrological inputs to the wetland, whereas rainfall on wetland, along with wetland bank inflows accounted for 45 and 28%, respectively. Farmyard dirty water quality and quantity did not vary with season. Yearly mass loads discharged to the wetland were 47 ± 10 kg yr−1 of soluble reactive phosphorus (SRP), 128 ± 35 kg yr−1 of NH4+, 5484 ± 1433 kg yr−1 of organic material as measured by five-day biological oxygen demand (BOD5), and 1570 ± 465 kg yr−1 of total suspended solids (TSS). Phosphorus retention by the wetland varied with season (5–84%) with least amounts being retained during winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号