首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

2.
《Ecological Engineering》2005,24(3):185-198
In 2001, to foster the practical development of constructed wetlands (CWs) used for domestic wastewater treatment in Turkey, vertical subsurface flow constructed wetlands (30 m2 of each) were implemented on the campus of the METU, Ankara, Turkey. The main objective of the research was to quantify the effect of different filter media on the treatment performance of vertical flow wetlands in the prevailing climate of Ankara. Thus, a gravel-filled wetland and a blast furnace granulated iron slag-filled wetland were operated identically with primarily treated domestic wastewater (3 m3 d−1) at a hydraulic loading rate of 0.100 m d−1, intermittently. Both of the wetland cells were planted with Phragmites australis. According to the first year results, average removal efficiencies for the slag and gravel wetland cells were as follows: total suspended solids (TSS) (63% and 59%), chemical oxygen demand (COD) (47% and 44%), NH4+–N (88% and 53%), total nitrogen (TN) (44% and 39%), PO43−-P (44% and 1%) and total phosphorus (TP) (45% and 4%). The treatment performances of the slag-filled wetland were better than that of the gravel-filled wetland in terms of removal of phosphorus and production of nitrate. Since this study was a pioneer for implementation of subsurface constructed wetlands in Turkey using local sources, it has proved that this eco-technology could also be used effectively for water quality enhancement in Turkey.  相似文献   

3.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

4.
The adsorption characteristics of various filter media and treatment efficiency of small pilot-scale constructed wetlands (CWs) were investigated in order to design optimum CWs for treating greenhouse wastewater. Calcite was the best filter medium for the adsorption of ammonium nitrogen and phosphorus under various temperature and pH conditions. However, removal efficiency of calcite for total nitrogen (T-N) removal was low due primarily to high nitrate levels. Thus, several hybrid CWs (containing calcite as filter media) consisting of combinations of vertical flow (VF) and horizontal flow (HF) beds were evaluated for improving efficiency for T-N removal. Both 2- and 3-stage combinations of the VF and HF beds were tested. The optimum hybrid CWs was demonstrated to be a 3-stage combination of horizontal flow (HF)–vertical flow (VF)–horizontal flow (HF), which provided suitable conditions for both nitrification and denitrification, which improved removal of T-N in wastewater containing nitrate. In the HF–VF–HF 3-stage hybrid CWs, the reduction in chemical oxygen demand (COD), T-N, and total phosphorus (T-P) in the effluent were 95.1, 68.4 and 94.3%, respectively. The removal of COD, T-N and T-P in 3-stage HF–VF–HF CWs was rapid in order of VF (second stage)  HF (first stage)  HF (third stage), VF (second stage)  HF (third stage) > HF (first stage) and VF (second stage)  HF (first stage)  HF (third stage), respectively.  相似文献   

5.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

6.
The reuse of grey water for non-potable water applications is a potential solution for water-deprived regions worldwide. Adequate treatment of grey water prior to reuse is important to reduce the risks of pathogen transmission and to improve the efficacy of subsequent disinfection. This study investigated the presence of common pathogens in grey water and compared the pathogen removal performance of leading contender treatment technologies. The opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus were detected in the grey water tested. Three configurations of constructed wetland, a membrane bioreactor (MBR), and a membrane chemical reactor (MCR) were evaluated for indicator bacteria (total coliforms, Escherichia coli, Enterococci, Clostridia, and heterotrophs) removal over a period of 2 years under conditions of low and high strength grey water influent. Total coliforms were found to be good indicators for P. aeruginosa, showing strong and significant Spearman's rank correlations in the influent grey water (rs = 0.77, P = 0.005) and treated effluents (rs = 0.81, P  0.001). The MBR provided the highest quality treated effluent and was the most robust treatment technology, remaining unaffected by an increase in influent grey water strength. Of the three constructed wetlands, the VFRB was the most reliable performer under low and high strength influent conditions, indicating aerobic unsaturated wetland to be the most suitable form of the technology for pathogen removal.  相似文献   

7.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

8.
In Egypt, disposing of partially treated or untreated domestic and industrial wastewater into agricultural drains deteriorates their water quality. A growing interest in effective low-cost treatment of polluted water and wastewater has resulted in many studies on constructed wetlands.This study evaluates free water surface constructed wetlands (by far the largest application project is named “Lake Manzala Engineered Wetland [Egypt]”) utilized to improve the water quality in Bahr El Baqar drain, which is located at the northeastern edge of the Nile Delta. This drain discharges its water into Manzala Lake, which in turn has many fishing activities and is connected to the Mediterranean Sea. The full capacity of the constructed wetland system is 25,000 m3/day. Three various flow rate wetlands were investigated; five wetland beds of high flow rate of 0.344 m3/m2-day, five wetland beds of low flow rate of 0.048 m3/m2-day and reciprocated cells of flow of 500 m3/day.The concentrations of different contaminants along the constructed wetlands system were measured to determine the treatment efficiency. The effluent was compared with the Egyptian standards of water quality in agricultural drains (Law 48/1982). Due to the high percentage of the agricultural water drain, the concentrations of contaminants in the influent were relatively low. The percentages of removal for the different contaminants were BOD5: 52%, COD: 50%, TSS: 87%, TDS: 32%, NH4-N: 66%, PO4: 52%, Fe: 51%, Cu: 36%, Zn: 47% and Pb: 52%. The natural vegetation considerably increased the value of dissolved oxygen in the treated effluent. There were little differences in the removal efficiency between the high and low flow rates beds in the system.  相似文献   

9.
Most biodiversity experiments have been conducted in grassland ecosystems with nitrogen limitation, while little research has been conducted on relationships between plant biomass production, substrate nitrogen retention and plant diversity in wetlands with continuous nitrogen supply. We conducted a plant diversity experiment in a subsurface vertical flow constructed wetland for treating domestic wastewater in southeastern China. Plant aboveground biomass production ranged from 20 to 3121 g m?2 yr?1 across all plant communities. In general, plant biomass production was positively correlated with species richness (P = 0.001) and functional group richness (P = 0.001). Substrate nitrate concentration increased significantly with increasing plant species richness (P = 0.046), but not with functional group richness (P = 0.550). Furthermore, legumes did not affect biomass production (P = 0.255), retention of substrate nitrate (P = 0.280) and ammonium (P = 0.269). Compared to the most productive of the corresponding monocultures, transgressive overyielding of mixed plant communities did not occur in most polycultures. Because greater diversity of plant community led to higher biomass production and substrate nitrogen retention, thus we recommend that plant biodiversity should be incorporated in constructed wetlands to improve wastewater treatment efficiency.  相似文献   

10.
This paper presents a simple method for evaluating the degree of clogging of subsurface flow constructed wetlands based on saturated hydraulic conductivity measurements. The method was applied to two full-scale wetlands located inside the wastewater treatment plants of two small villages (2000 PE) in the province of Lleida, Catalonia, Spain. In addition, to gain an insight into the mechanisms that lead to clogging, other measurements and analyses were carried out including the quantification of accumulated solids and belowground plant biomass. X-ray diffraction analyses were carried out to evaluate the mineral composition of accumulated sludge and granular medium. Hydraulic conductivity measurements and samples for solids analyses were taken along two transects that spanned the length of each wetland. Patterns for hydraulic conductivity were the same in both wetlands: very low values from the inlet zone to the middle (<20 m/d), clearly higher from the middle to 4/5 of the length (600–800 m/d), and lower very near the outlet (40–70 m/d). These results indicate that the first half of the length of both wetlands is highly clogged. Total solids (TS) were generally higher near the inlet than the outlet (TSinlet = 3–15 kg/m2; TSoutlet = 1–9 kg/m2). Belowground plant biomass values were variable and did not show a clear pattern. In both wetlands the mineral fraction of the solids represented more than 75% of TS in most of the samples. X-ray diffraction analyses showed that the mineral composition of the solids coincided with that of the granular medium (mostly calcite and quartz). The proposed method based on hydraulic conductivity measurements is straightforward to use, does not require costly devices and allows to successfully evaluate the degree of clogging.  相似文献   

11.
Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates of 80, 160 and 320 mm d?1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2–20.2 kg dry matter m?2 year?1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320 mm d?1 the effluent quality was unacceptable and hydraulic problems appeared. Mass removal rates and removal rate constants were much higher than reported in other studies probably because of the high-strength wastewater, the high loading rates and the tropical conditions. Planted systems removed pollutants much more efficiently than the unplanted controls. Direct plant uptake constituted only up to 8% of the total-N removal and 2% of the P removal at the lowest loading rate, and was quantitatively of low importance compared to other removal processes. The significant effects of plants were therefore related more to their indirect effects on the removal processes. This study for the first time documents that S. sesban can be used in constructed wetland systems for the treatment of polluted water while at the same time producing a valuable N rich biomass that can be used for animal fodder or soil amendment.  相似文献   

12.
The photosynthetic characteristics of several wetland plants and their influence on oxygen-evolving activities and disposal efficiencies of horizontal flow subsurface constructed wetlands were compared. The results indicated that the photosynthetic rate of wetlands plants was highly correlated with light intensity and temperature. The photosynthetic characteristics of wetlands species can affect their ability to provide oxygen, and this ultimately influences their disposal efficiencies. Observations indicated that the ability of wetland plants to provide oxygen and remove pollutants decreases in the following order: Phragmites > Canna > Camellia > Dracaena.  相似文献   

13.
In constructed wetlands, solids accumulation may have two consequences with opposing effects on treatment efficiency: it decreases the longevity by reducing void space and it enhances biological activity by favoring biofilm development. The goal of our study was to estimate the effect of plants (presence and species) and artificial aeration on solids accumulation (volatile and inorganic). The horizontal and vertical distribution of solids was sampled using solids traps in 12 constructed wetland mesocosms (5 years old). Microbial density and activity were estimated in the biological fraction of the sampled solids. The effect of plant presence reduced accumulated solids by 26% and sulphide content by 50% sulphide content. There was more solids accumulation in Typha angustifolia units than in Phragmites australis. Also, T. angustifolia generated more biological activities at the surface and close to the inlet while conditions were more homogeneous throughout P. australis units. Aeration (1) stimulated biofilm development at the inlet of planted beds, (2) seemed to reduce mineral matter accumulation and (3) generated the same pattern of activities in planted beds enabling to reach a total nitrogen removal rate of up to 0.65 g N m?2 d?1.  相似文献   

14.
Disposable shaking bioreactors are a promising alternative to other disposable bioreactors owing to their ease of operation, flexibility, defined hydrodynamics and characterization. Shaken bioreactors of sizes 20 L and 50 L are characterized in terms of heat transfer characteristics in this research work. Water and an 80% glycerol–water system were used as fluid. Results indicated large heat generation due to shake mixing which was observed by temperature difference between the fluid inside the vessel and the surrounding air outside the vessel. Maximum temperature difference of ca. 30 K was encountered for a 50 L vessel, at 300 rpm and 20 L filling volume. Outside heat transfer rate was governing the overall heat transfer process. Lateral air flow did increase heat transfer rates to large extent. An empirical correlation of overall heat transfer coefficient was obtained in terms of filling volume, rotational speed and lateral air flow rate. However, as the vessel thickness increased, the overall heat transfer process was limited by vessel wall resistance.  相似文献   

15.
Nitrogen in wastewater degrades aquifer and surface water quality. To protect water quality in the United States, nitrogen discharge standards are strict: typically 1.0 mg/L NH4-N for discharge to surface water and 10 mg/L total nitrogen (TN) for discharge to soil. Passive constructed wetland treatment systems cannot meet the nitrification standards discussed in this paper, using loading rates commonly considered to be cost-effective based on economic conditions in North America. Although partial nitrification can be achieved with some vertically or intermittently loaded, subsurface flow (SSF) wetlands, complete nitrification cannot be achieved in these passive wetland treatment systems. Engineered wetlands (EWs) use mechanical power inputs via pumping of air or water to nitrify wastewater, and have evolved in large part to nitrify wastewater. The design energy requirements for these power inputs have yet to be described in the wetland treatment literature. Our paper investigates the energy and area requirements of three wetland technologies: aerated subsurface flow, tidal flow, and pulse-fed wetland treatment, compared to a mechanical activated-sludge treatment system.  相似文献   

16.
《Journal of Asia》2014,17(3):633-637
This study was performed to clarify how the relative volume of saturated/unsaturated lipid and reproductive maturation relate to resistance to high temperature in the oceanic sea skaters, Halobates micans. Heat coma temperature (HCT) was measured in H. micans adults collected from a fixed sampling location (12°00′N, 135°00′E) in the western tropical Pacific Ocean. After measuring HCT, the specimen were dissected to measure the testes size and to determine the presence and number of oocytes in females. Bodies of the specimen were assessed by lipid analysis to evaluate saturated and unsaturated lipid content. A negative trend was seen between heat coma temperature and percentage of a saturated fatty acid, myristic acid (ratio of carbon number to number of double bonds = 14:0) (Pearson's correlation test: r =  0.520, p = 0.101). In contrast, a positive trend was detected between heat coma temperature and percentage of an unsaturated fatty acid, palmitoleic acid (16:1) (r = 478, p = 0.137). Young males with small testes showed lower heat coma temperatures, whereas females that showed relatively high heat coma temperatures of 36–40 °C tended to have fewer mature oocytes in their ovaries than those that showed low heat coma temperatures of 30–34 °C. As Halobates appears to exhibit embryonic diapause rather than adult diapause, males of H. micans may develop both testes and resistance to high temperature in the parallel as they grow. In females, a trade-off may occur between heat tolerance function and oogenesis in the oceanic sea skaters.  相似文献   

17.
Anoxic subsurface flow (SSF) constructed wetlands were evaluated for denitrification using nitrified wastewater. The treatment wetlands utilized a readily available organic woodchip-media packing to create the anoxic conditions. After 2 years in operation, nitrate removal was found to be best described by first-order kinetics. Removal rate constants at 20 °C (k20) were determined to be 1.41–1.30 d?1, with temperature coefficients (θ) of 1.10 and 1.17, for planted and unplanted experimental woodchip-media SSF wetlands, respectively. First-order removal rate constants decreased as length of operation increased; however, a longer-term study is needed to establish the steady-state values. The hydraulic conductivity in the planted woodchip-media SSF wetlands, 0.13–0.15 m/s, was similar to that measured in an unplanted gravel-media SSF control system.  相似文献   

18.
An integrated wetland system (IWS) including constructed wetlands (CWs) and modified natural wetlands (NWs) for wastewater treatment to replenish water to wetlands located at the Beijing Wetland School (BWS) in Beijing, China, is presented in this paper. The synergistic effects of CWs and NWs on treated water quality are investigated. The IWS is proved to be an effective wastewater treatment technique and a better alternative to alleviate the water shortage for conservation of wetlands based on the monitoring data obtained from October 2007 to 2008. The results show that CWs and NWs play different roles in removing contaminants from wastewater. The COD removal efficiency in CWs is higher than that in modified NWs, whereas the modified NWs can compensate for the deficiency of CWs where a stable and sufficient rhizosphere is not fully formed in the start-up period. All removal rates of COD, TN, and TP in CWs and modified NWs vary from 50 to 70%, while the total removal rate of COD, TN, and TP in IWS is about 85–90%. The operational results show that the maximum area loading of organic pollutants in modified NWs (65 kg/ha d) is slightly higher than the empirical one (60 kg/ha d) recommended by USEPA (2000) for free water surface wetlands.  相似文献   

19.
Biomonitoring is a common means of evaluating wetlands. It is based on the premise that the community composition of one taxonomic group is indicative of overall biology and the underlying environmental conditions at a wetland. To be a good bioindicator, there must be adequate concordance between the indicator group and other biotic assemblages. Otherwise, multi-assemblage monitoring is necessary to glean a complete picture of wetland condition. In 32 sites ranging from reference wetlands to stormwater retention ponds, we evaluated concordance in community composition among the six most commonly monitored wetland assemblages: waterfowl, wetland dependent songbirds, aquatic macroinvertebrates, and plants in the wet meadow, emergent, and open-water vegetation zones. We also assessed agreement in environmental correlates among these six assemblages and investigated the impact of human disturbance on cross-assemblage concordance. We found that cross-assemblage concordance was positive (p < 0.03 in 14 of 15 pair-wise comparisons, p = 0.06 in 15th case), but relatively low (Mantel R values 0.11–0.37), suggesting that the assemblages are mediocre surrogates for one another. Yet, we found very strong agreement among environmental correlates of the six assemblages, especially along the first axis of assemblage-specific ordinations (mean Spearman rho = 0.923), indicating that despite low concordance, the six assemblages are likely responding to the same environmental gradients. Thus, while a single assemblage may not serve as a surrogate for the other assemblages, it should yield an adequate estimate of underlying environmental conditions and the degree of disturbance. Most important among the environmental correlates were sediment and water nutrient levels, shoreline slope, and the size of wet meadow and emergent vegetation zones. Perhaps most interestingly, we found that the strength of cross-assemblage concordance was greatest in reference wetlands and was lower (p  0.05) in constructed wetlands. This implies that cross-assemblage concordance present in undisturbed sites may not persist in disturbed wetlands where several of these cross-assemblage relationships deteriorate. Furthermore, a general change in cross-assemblage concordance may itself be indicative of human disturbance in wetlands.  相似文献   

20.
Natural wetlands play an important role in the global carbon cycle, and loss of dissolved carbon through water has been indicated as one of the most important carbon sources for riverine ecosystems. During the last century, a large natural wetland area was reported to be converted to other land use types such as rice paddy land around the world. In this study, we explored the dynamics of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in two natural freshwater wetlands and a rice paddy field, which was reclaimed from the natural wetlands in the Sanjiang Plain, Northeastern China, during the growing season (May–October) of 2009. The DOC and DIC concentrations in the two ecosystems were significantly different (P < 0.05). The mean DOC concentrations during the growing season in the surface water of the Deyeuxia angustifolia and Carex lasiocarpa wetlands were 49.88 ± 5.44 and 27.97 ± 1.69 mg/L, respectively, while it was only 8.63 ± 2.54 mg/L in the rice paddy field. Specific ultra-violet light absorption at 254 nm (SUVA254) of DOC increased by an average of 19.54% in the surface water from the natural wetlands to rice paddy, suggesting that DOC mobilized in the natural wetlands was more aromatic than that in the rice paddy field. The mean DIC concentration in surface water of the rice paddy was 5.25 and 5.04 times higher than that in the natural D. angustifolia and C. lasiocarpa wetlands, respectively. The average ratio of DIC to dissolved total carbon (DTC) for the water sampled from the artificial drainage ditch in the rice paddy field was 61.82%, while it was 14.75% from the nearby channel of natural wetlands. The significant differences in dissolved carbon concentration in surface water and channels originating from different land use types suggested that reclamation of natural wetlands to rice paddy field would reduce DOC runoff and increase the DIC concentration to adjacent watersheds. Our study results for the changed pattern in dissolved carbon after the natural wetland was transformed to paddy field could have important implications for studying the impacts of the large-scale land use change to carbon cycle and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号