首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetland creation is a common practice for compensatory mitigation in the United States. Vegetation attributes have been used as a quick measure of mitigation success in most post-creation monitoring, while little attention has been paid to soils that provide the substrate for flora and fauna to establish and develop. Created wetland soils are often found not indicative of ‘hydric soil’ with a lack of development of physicochemical properties (i.e., bulk density, moisture content, and carbon and nitrogen contents) comparable to those in natural wetlands. Moreover, soil bacterial communities are rarely examined though they are integrally involved in biogeochemical functions that are critical for ecosystem development in created wetlands. We analyzed soil physicochemistry and profiled soil bacterial community structure using amplicon length heterogeneity polymerase chain reaction (LH-PCR) of 16S ribosomal DNA in three relatively young wetlands (<10 years old) created in the Piedmont region of Virginia. We examined the data by site and by specific conditions of each site (i.e., induced microtopography and hydrologic regime). Multidimensional scaling (MDS) and analysis of similarity (ANOSIM) showed clear clustering and significant differences both in soil physicochemistry (Global R = 0.70, p = 0.001) and in soil bacterial community profiles (Global R = 0. 77, p = 0.001) between sites. Soil physicochemistry (Global R = 1, p = 0.005) and bacterial community structure (Global R = 0.79, p = 0.005) of soils significantly differed by hydrologic regime within a wetland, but not by microtopography treatment. A significant association was found between physicochemistry and bacterial community structure in wetland soils, revealing a close link between two attributes (ρ = 0.39, p = 0.002). C/N (carbon to nitrogen) ratio was the best predictor of soil bacterial community patterns (ρ = 0.56, p = 0.001). The diversity of soil bacterial community (Shannon's H′) differed between sites with a slightly higher diversity observed in a relatively older created wetland, and seemed also fairly determined by hydrologic regime of a site, with a relatively dry site being more diverse.  相似文献   

2.
Cyanobacterial blooms are intensifying global ecological hazards. The fine structure and dynamics of bloom community are critical to understanding bloom development but little understood. Here, the questions whether dominant bloomers have high diversity and whether dominant OTUs (operational taxonomical units) compete with one another were addressed. 16S rRNA gene amplicons from an annual bloom at five locations in Harsha Lake (Ohio, USA) showed cyanobacteria were the dominant phylum, and co-existing major bacterial phyla included Proteobacteria, Bacteroidetes, Actinoacteria, and Verrucomicrobia. On the genus level, the initial dominance by Dolichospermum in June yielded to Planktothrix in July, which were replaced by Microcystis and Cylindrospermopsis in August throughout the bloom. Based on the number of verified unique OTUs (a within-genus biodiversity metric), dominant genera tended to have high within-genus diversity. For example, Dolichospermum had 57 unique OTUs, Planktothrix had 36, Microcystis had 12, and Cylindrospermopsis had 4 unique OTUs. Interestingly, these different OTUs showed different dynamics and association with other OTUs. First, no between-OTU competitions were observed during the bloom cycle, and dominant OTUs were abundant throughout the bloom. Such biodiversity of OTUs and their dynamics were verified in Microcystis aeruginosa with two microcystin synthetase genes (mcyA and mcyG): the relative abundance of both genes varied during the bloom based on quantitative PCR. Two Dolichospermum circinale OTUs and one P. rubescens OTU were most abundant and persistently present throughout the entire bloom. Second, these OTUs differed in the OTUs they were associated with. Third, these OTUs tended to have different levels of association with the environmental factors, even they belonged to the same genera. These findings suggest the structure and dynamics of a cyanobacterial bloom community is complex, with only few OTUs dominating the bloom. Thus, high-resolution molecular characterization will be necessary to understand bloom development.  相似文献   

3.
4.
Aim To reconstruct the last c. 7000 years of vegetation and climate change in an unusual region of modern Great Plains grassland and scarp woodland in south‐east Colorado (USA), and to determine the late Holocene biogeography of Colorado piñon (Pinus edulis) at its easternmost extent, using a series of radiocarbon‐dated packrat (Neotoma sp.) middens. Location The West Carrizo Canyon drains the Chaquaqua Plateau, a plateau that projects into the western extent of the southern Great Plains grasslands in south‐eastern Colorado, USA. Elevations of the study sites are 1448 to 1525 m a.s.l. Today the plateau is mostly Juniperus scopulorumP. edulis woodland. Methods Plant macrofossils and pollen assemblages were analysed from 11 14C‐dated packrat middens. Ages ranged from 5990 yr bp (6839 cal. yr bp ) to 280 yr bp (485 cal. yr bp ). Results The results presented here provide information on the establishment and expansion of JuniperusP. edulis woodland at its eastern limits. The analysis of both plant macrofossils and pollen from the 11 middens documents changes in plant communities over the last 7000 years, and the establishment of P. edulis at its easternmost limit. Though very minor amounts of P. edulis pollen occur as early as the middle Holocene, plant macrofossils were only recovered in middens dating after c. 480 cal. yr bp . Main conclusions Originally, midden research suggested a late glacial refuge to the north‐east of the Carrizo Canyon site, and a middle Holocene expansion of P. edulis. Results reported here are consistent with a late Holocene expansion, here at its eastern limits, but noted elsewhere at its northern and north‐eastern limits. In general, this late Holocene expansion is consistent with pollen data from sediments in Colorado and New Mexico, and suggests that P. edulis is still expanding its range at its present extremes. This has implications for further extension of its range due to changing climatic conditions in the future.  相似文献   

5.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

6.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

7.
ABSTRACT

Capsule: A data-thinning approach was used to assess the effects of reducing the frequency of nest-checks on estimates of breeding success of Common Guillemots Uria aalge. Inter-year and inter-colony differences in fledging age and their implications for setting a minimum age after which a chick could be assumed to have fledged were evaluated.

Aims: To assess the consequences of reducing sampling frequency on the estimation of breeding success, and on the robustness of the assumption that breeding has been successful if a chick survives to 15 days old.

Methods: Breeding success, ages at fledging and loss of chicks were estimated from daily checks at two Scottish colonies over a six-year period. Data-thinning was used to assess the consequences of reducing checks from daily to every two or three days. Breeding success was recalculated assuming that all chicks surviving to 15 days fledged.

Results: Reducing the frequency of checks from daily to every second or third day resulted in a small but statistically significant increase in the estimate of success. Between 20% and 25% of chick losses occurred when chicks were ≥15 days old. Assuming that these chicks had fledged resulted in significant increases in breeding success.

Conclusion: Assumptions about whether or not a chick fledged had a greater impact on the estimate of breeding success than reducing the frequency of nest-checks from daily to every second or third day. There was no threshold age after which a chick could be assumed to have fledged. These findings are relevant to other monitoring schemes where there is pressure to reduce input. Sampling methods used in monitoring schemes need to be clearly stated and changes in protocols documented so that sampling effects can be incorporated into future analyses.  相似文献   

8.
Fens are widely distributed wetlands worldwide and provide vital habitat for plant and animal species in mountainous regions. Alpine fens are rare in the Rocky Mountains and concentrated in the San Juan Mountains where broad regions at high elevation have relatively level topography and suitable climate to favor peat accumulation. Studies of montane and boreal peatlands have identified water chemistry as a main driver of vegetation composition. This study investigated whether similar drivers of vegetation composition are important for alpine and subalpine fens in the San Juan Mountains of Colorado, USA. Water chemistry variables were most important in structuring subalpine and alpine fen vegetation. However, these variables explained considerably less variation in alpine than subalpine fen vegetation. In addition, lower variance of water chemistry in alpine fens did not lead to lower beta diversity of vegetation in alpine than in subalpine fens. Although alpine and subalpine fen vegetation supports similar beta diversity, key differences occur in the environmental drivers of their vegetation composition.  相似文献   

9.
Nitrogen and phosphorus additions from anthropogenic sources can alter the nutrient pool of aquatic systems, both through increased nutrient concentrations and changes in stoichiometry. Because bacteria are important in nutrient cycling and aquatic food webs, information about how nutrients affect bacterial communities enhances our understanding of how changes in nutrient concentrations and stoichiometry potentially affect aquatic ecosystems as a whole. In this study, bacterial communities were examined in biofilms from cobbles collected across seasons at three sites along the Mahoning River (Ohio) with differing levels of inorganic nutrient inputs. Members of the alpha-, beta-, and gamma-proteobacteria, the Cytophaga–Flavobacteria cluster, and the Domain Bacteria were enumerated using fluorescent in situ hybridization. Detrended canonical correspondence analysis (DCCA) revealed that stoichiometric ratios, especially the dissolved inorganic nitrogen (DIN):soluble reactive phosphorus (SRP) molar ratio (NO2/NO3 + NH4:soluble reactive phosphorus), were correlated with abundance of the various bacterial taxa. However, the patterns were complicated by correlations with single nutrient concentrations and seasonal changes in temperature. Seasonal cycles appeared to play an important role in structuring the community, as there were distinct winter communities and temperature was negatively correlated with abundance of both alpha-proteobacteria and Cytophaga–Flavobacteria. However, nutrients and stoichiometry also appeared to affect the community. Numbers of cells hybridizing the Domain Bacteria probe were correlated with the DOC:DIN ratio, the beta-proteobacteria had a negative correlation with soluble reactive phosphorus concentrations and a positive correlation with the DIN:SRP ratio, and the Cytophaga–Flavobacteria had a significant negative partial correlation with the DIN:SRP ratio. Abundances of the alpha- or gamma-proteobacteria were not directly correlated to nutrient concentrations or stoichiometry. It appears that nutrient stoichiometry may be an important factor structuring bacterial communities; however, it is one of many factors, such as temperature, that are interlinked and must be considered together when studying environmental bacteria.  相似文献   

10.
In New England salt marshes, man-made earthen barriers, or berms, are generally historic, small-scale (average height = 0.71 m ± 0.12 SE; average length = 166 m ± 41 SE) tidal restrictions which originated from past agricultural, industrial, and environmental practices. The orientation and size depends primarily on the original purpose of the barrier, but this study examines the effects of berms oriented parallel to the incoming tide such that some landward portion of the marsh receives a different tidal signal than the seaward portion. Our hypotheses considered the impacts of the altered hydrology on pore water chemistry and edaphic characteristics. The results indicate that the effect of berms on salt marsh physical structure varies significantly by site. Where the tidal flooding frequency is restricted and drainage is poor, the landward marsh shows pool development, high salinity and sulfide concentrations, and low vegetation cover. In contrast, where tidal flooding is inhibited but the marsh soils are well-drained, salinity and sulfide concentrations decrease and accelerated decomposition results in subsidence and reduced soil organic matter. Given these findings, impacts from berms may impair salt marsh function and resilience to invasive plants and sea level rise.  相似文献   

11.
1. Perching dragonflies are closely associated with the physical structure of vegetation because adults utilise plants when foraging, thermoregulating, and mate-seeking. However, little attention has been given to which structural attribute of vegetation is playing a key role within foraging habitat use. 2. This study focused on the influence of different features of perches on their selection by adult dragonflies. As a model group, a typical percher behavioural guild of Sympetrum was used and experimental plots with artificial perches and different structural properties were established. 3. It was found that adults preferred perch sticks with a wider diameter and larger spacing. It is assumed that these perching sites are advantageous because their base is more stable, they provide the best view for successful foraging, and there is no interference among individuals. 4. This study also revealed significant differences between male and female preferences. Females used less structured vegetation formed by thin perches in high densities. It is suggested that female discrimination is influenced by the higher competitiveness of males, which is related to their agonistic behaviour. 5. These results suggest that the availability of perches in the foraging habitat might be an essential requirement for adults. However, within the terrestrial surroundings of breeding sites, the structure of vegetation providing conditions for perching may be associated only with certain habitats. In intensive landscapes, physically structured vegetation can be limited or completely absent.  相似文献   

12.
Mosquitoes such as those in the Culex pipiens complex are important vectors of disease. This study was conducted to genetically characterize Cx. pipiens complex populations in the state of Colorado, USA, and to determine the number of genetic clusters represented by the data. Thirteen populations located among four major river basins were sampled (n = 597 individuals) using a panel of 14 microsatellites. The lowest-elevation sites had the highest Expected Heterozygosity (HE) values (range 0.54–0.65). AMOVA results indicated the presence of statistically significant amounts of variation within each level when populations were analyzed as one group or when they were grouped either by river basin or by their position on the east or west side of the Rocky Mountains. Most pairwise FST values were significant via permutation test (range 0–0.10), with the highest values from comparisons with Lamar, in southeast CO. A neighbor joining tree based on Cavalli–Sforza and Edwards’s chord distances was consistent with the geographic locations of populations, as well as with the AMOVA results. There was a significant isolation by distance effect, and the cluster analysis resolved five groups. Individuals were also assayed with an additional microsatellite marker, Cxpq78, proposed to be monomorphic in Cx. pipiens but polymorphic in the closely related but biologically distinct species Cx. quinquefasciatus. Low frequencies (≤3%) of Cx. quinquefasciatus alleles for this marker were noted, and mostly confined to populations along the Interstate 25 corridor. Pueblo was distinct in that it had 10% Cx. quinquefasciatus alleles, mostly of one allele size. The degree of population genetic structure observed in this study is in contrast with that of Cx. tarsalis, the other major vector of WNV in the western U.S., and likely reflects the two species’ different dispersal strategies.  相似文献   

13.
We studied the relative effects of mate retention and breedingexperience on reproductive success in Cassin's auklet (Ptychoramphusaleuticus) on Southeast Farallon Island, California, USA. Breedingsuccess of banded birds was monitored from 1985 to 1990 andanalyzed using linear and logistic regression. Breeding performanceimproved with experience and mate retention, but their relativeeffects differed. Hatching success improved with both femaleand male experience but declined with advanced experience inmales, perhaps due to reproductive senescence. In males, butnot in females, hatching success showed a quadratic relationshipwith length of the pair-bond when adjusted for experience, indicatinga greater benefit to males for mate retention. Fledging andbreeding success and weight at fledging also increased asymptoticallywith length of the pair-bond for both sexes. There was no correlationbetween mate switching and previous reproductive failure. Anincrease in weight at fledging with experience in females, butnot in males, suggests that females either became more efficientat foraging or invested greater effort in chick rearing withexperience than males.  相似文献   

14.
An ecological and hydrologic restoration of the Mississippi–Ohio–Missouri (MOM) Basin in the United States is proposed as the solution to the reccurring hypoxic conditions in the Gulf of Mexico. Nitrate–nitrogen is the cause of this eutrophication in the Gulf and its source is mainly due to increased fertilizer use in the American Midwest. In that same Midwest, the land has also been artificially drained and 80–90% of the original wetlands have been lost. Our proposed restoration involves the strategic creation and restoration of 2.2 million ha of wetlands in the MOM basin where in-field wetlands intercept agricultural runoff and diversion wetlands are overflowed by flooding river water. Case studies that total 50 wetland-years of data from Illinois, Ohio, and Louisiana are summarized as the basis for the restoration area estimate. Benefits of this restoration, in addition to solving the Gulf hypoxia, include water quality improvement, reduction of public health threats, habitat creation, and flood mitigation that will accrue to the locations in the MOM basin where the restoration occurs. Before the restoration commences, there is a need for formal and rigorous large-scale research in the basin to reduce uncertainties.  相似文献   

15.
Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16 °C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments.  相似文献   

16.
The association between social rank, mating effort, and reproductive success of male Barbary macaques (Macaca sylvanus) has been evaluated by longterm behavioral observations and subsequent paternity determination via oligonucleotide DNA fingerprinting in a large semifreeranging group. All offspring born between 1985 and 1988 that survived to at least 1 year of age (n=75) were available for paternity testing. The exclusion of all but one of the potential fathers from paternity was possible in 70 cases (93%). Mating activities were recorded using ad lib. and focal female sampling techniques. The analysis of male mating effort was restricted to the most likely days of conception. Male rank correlated significantly with male mating success in all four breeding seasons and with male reproductive success in three of the four seasons. Mating success and reproductive success also showed a significant correlation, with the exception of one breeding season, in which the proportion of males per fertilizable female was especially high. Poor mating success was almost always associated with poor reproductive success, while good mating success was less predictive for a male's actual reproductive success. This was apparently a consequence of sperm competition, resulting from the promiscuous mating system. Male mating success is not necessarily an unreliable indicator for reproductive success, provided that sufficient sample sizes are available and that conception periods can be determined. Sperm competition and other factors may weaken the association, however.  相似文献   

17.
Government and academic studies indicate that many streams in the Appalachian Mountains have degraded biological communities stemming from a variety of regional landuses. Headwater stonefly (Plecoptera) and caddisfly (Trichoptera) assemblages were assessed between 1999 and 2004 in relation to pervasive landuse disturbances (coal mining and residential) in mountainous areas of eastern Kentucky, USA. Indicator metrics (richness, abundance, tolerance, and an observed/expected (O/E) null model) were compared among 94 sites with different land use pressures including least disturbed reference, residential, mining, and mixed mining and residential categories. Thirty-three stonefly species from 26 genera and 9 families were identified; Leuctra, Acroneuria, Haploperla, and Isoperla comprised the core genera that commonly decreased with disturbance. Caddisflies were represented by 48 species, 32 genera, and 14 families. Core caddisfly genera (Neophylax, Pycnopsyche, Rhyacophila, Lepidostoma, and Wormaldia) were extirpated from most disturbed sites. Species richness was significantly higher at reference sites and reference site mean tolerance value was lowest compared to all other categories; relative abundance of both orders was variable between disturbance groups. Non-metric multidimensional scaling (for riffle-dwelling stonefly and caddisfly genera) clustered reference sites distinctly from most other sites. The O/E index was highly correlated with individual habitat and chemical stressors (pH, conductivity) and on average, it estimated ~ 70% loss of common stoneflies and caddisflies across all disturbed landuse categories. Expected plecopteran and trichopteran communities were radically altered in streams draining mining and residential disturbance. Long-term impacts incurred by both landuses will continue to depress these vulnerable indigenous fauna.  相似文献   

18.
Aim Individually focused conservation management of many species is expensive and logistically impractical. Mesofilter conservation methods may facilitate the simultaneous management of multiple species. We used data on distributions of two sets of avian guilds, based on dependence on riparian vegetation and on nest location, to relate occurrence rates to environmental variables. Variables were selected by expert opinion and are likely to be affected by changes in climate and land use. Location Data were collected from 2001–06 in four adjacent mountain ranges in the central Great Basin (Lander, Nye and Eureka counties, Nevada, USA): the Shoshone Mountains and the Toiyabe, Toquima and Monitor ranges. Methods Data on occurrence of birds, vegetation composition and vegetation structure were obtained in the field. Geographical coordinates and the normalized difference vegetation index were derived from a digital elevation model and a satellite image. To construct a general model for guilds as a whole, while allowing flexibility for variation in the functional responses of individual species, we applied multivariate adaptive regression splines. Results The predictive capacity of expert knowledge of relationships between birds and vegetation was inconsistent. Latitude, longitude and elevation may constrain the response of some guilds to changes in vegetation structure and composition. Guild‐based models were useful for modelling species with sparse distributions, which are difficult to model individually. In essence, this method supplements models for the individual species with patterns for the guild to which they belong. Main conclusions Guilds of birds appeared to have predictable associations with selected attributes of vegetation structure and composition. The criteria by which species are grouped into guilds may affect the success of predictions and management interventions. Our derived models offer the potential to predict effects on the avifauna of management or climate‐driven change in vegetation.  相似文献   

19.
Foliar phosphorus (P) and nitrogen (N) concentrations and nutrient resorption in the forest understory shrub Lonicera maackii (Rupr.) Maxim (Caprifoliaceae) were measured along contiguous topographic gradients in two southwestern Ohio forests during 1992–1994. Mean summer foliar P varied significantly among topographic positions (but not sites or years), with uplands having greatest P concentrations and bottomlands exhibiting the lowest. Unlike for P, the mean summer foliar N concentrations varied little among sites, topographic positions, and years. Mean absolute and proportional P resorption ranged from 0.48 mg/dm2 (33.7%) in slope positions to 0.80 mg/dm2 (53.1%) in bottomland positions. Repeated-measures analysis of variance (RMANOVA) for P resorption indicated significant topographic and year effects, a site × year and a site × year × topographic interaction. Mean absolute and proportional foliar N resorption ranged from 6.82 mg/dm2 (30.7%) in bottomlands to 8.41 mg/dm2 (37.3%) in slope positions. RMANOVA indicated a significant topographic effect for both absolute and proportional N resorption and a significant year effect for absolute N resorption. These significant year effects for P and N stemmed from lowest resorption of nutrients in 1993. The results for P resorption support the hypothesis that foliar resorption is greater in forested sites with lower P fertility. However, resorption rates for N did not support the hypothesis clearly, as slopes with intermediate N availability had greater N resorption rates than did N-rich bottomlands.  相似文献   

20.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号