首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was carried out in the Pinus roxburghii Sargent (Chir pine) forest in the sub-tropical region of Garhwal Himalaya to assess the effect of fire on soil nutrient status at different altitudes (700 m, 800 m and 1000 m), soil depths (0–20 cm, 20–40 cm and 40–60 cm) and on under storey vegetation. The soil nutrients and under storey vegetation were assessed before fire (pre-fire) and after fire (post-fire). The results of the study indicate that fire plays an important role in soil nutrient status and under storey vegetation. The nutrients (soil organic carbon, nitrogen, phosphorus and potassium), decreased in post-fire assessment and with increasing altitudes, and soil depths, compared to pre-fire assessment. The under storey vegetation diminished after fire in all forest sites. The study concludes that in Chir pine forest, fire plays a role in reducing soil nutrients along the altitudinal gradient, soil depths and under storey vegetation. Thus, these nutrients can be saved through some management practices e.g. by early controlled burning and by educating local villagers about the negative impacts of severe wild fires on soil and vegetation.  相似文献   

2.
Four treatment peatlands were studied in Northern Finland in order to determine peat P, Al and Fe concentration distributions and to find removal parameters for nutrient modelling. The sites had been under loading for 10–16 years. About 20 peat samples for analyses of oxalate-extractable and total P, Al and Fe were collected from the depth 0–10 cm in each peatland. The peat P concentration ranged from 0.097 mg g?1 to 14 mg g?1 being 1.7 mg g?1on average. P accumulated in preferential flow path areas. Although P concentrations were locally high, DSSP (the index of potential soil P release from peat to water) was very low in all studied peatlands, indicating that peat was not saturated by phosphorus. The results indicate that Al-based precipitation chemicals increase substantially P retention capacity of peatland and maintain a stabile P reduction in spite of varying P loads. The results also show long-term phosphorus accumulation in peatlands polishing municipal wastewater from activated sludge treatment. The regression analyses showed that k-value for N removal depends on N loading and hydraulic loading. The first-order area model together with regression analysis of the rate constant result in a good agreement between observed and calculated nitrogen concentration. The NH4-N loading to the peatland should be below 0.10 mg m2 d?1 in order to achieve a high reduction of 70%.  相似文献   

3.
《Journal of plant physiology》2014,171(3-4):199-204
Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of 15N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against 15N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant−1 week−1) versus P-deficient (75 μmol P plant−1 week−1) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of 15N over total N content (15N/Nt) for shoots, roots and nodules were determined. The results showed lower 15N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in 15N/Nt in shoots (−0.18%) than in nodules (−0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (−0.33%) and 104 (−0.25%). Nodule 15N/Nt was significantly related to both the quantity of N2 fixed (R2 = 0.96***) and the P content of nodules (R2 = 0.66*). We conclude that the discrimination against 15N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the 15N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation.  相似文献   

4.
Aluminium toxicity is one of the major limiting factors of crop productivity on acid soils. High levels of available aluminium in soil may induce phosphorus deficiency in plants. This study investigates the influence of Aluminium (Al) on the phosphate (Pi) uptake of two Phaseolus species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L. The two bean species were treated first with solutions of Al at different concentrations (0, 25, 50 and 100 μM, pH 4.50) and second with solutions of Pi (150 μM) at pH 4.50. The higher the Al concentration the higher the Al concentration sorbed but P. vulgaris L var. Red Kidney adsorbed significantly more Al than P. lunatus L. Both species released organic acids: P. vulgaris L var. Red Kidney released fumaric acid and P. lunatus L. fumaric and oxalic acids which could have hindered further Al uptake.The two bean species showed a sigmoid Pi uptake trend but with two different mechanisms. P. vulgaris L var. Red Kidney showed a starting point of 3 h whereas P. lunatus L. adsorbed Pi immediately within the first minutes. In addition, P. vulgaris L var. Red Kidney presented significantly higher Pi uptake (higher uptake rate ‘k’ and higher maximum adsorption ‘a’ of the kinetic uptake model). The Al treatments did not significantly influence Pi uptake. Results suggest that P. lunatus L. might adopt an external Al detoxification mechanism by the release of oxalic acid. P. vulgaris L var. Red Kidney on the other hand seemed to adopt an internal detoxification mechanism even if the Al sorbed is poorly translocated into the shoots. More detailed studies will be necessary to better define Al tolerance and/or resistance of Phaseolus spp.  相似文献   

5.
We studied the growth and photosynthesis of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil and the effects of soil N load, to determine the performance of this species as reforestation material in serpentine regions. We prepared 16 experimental plots (2 m × 4 m each), eight on serpentine and eight on brown forest soil, and planted one-year-old cutting seedlings of the hybrid larch F1 in each plot, in May 2007. Ammonium sulfate was supplied to half of the plots of each soil type in 2008 and 2009, at a load of 47 kg N ha−1 year−1. Although the growth and photosynthetic capacity of hybrid larch F1 seedlings in the serpentine soil were limited, the rate of growth in serpentine soil was greater than that of Sakhalin spruce (Picea glehnii) that is dominant species in serpentine regions. There was significant interaction between soil type and N load for the growth and photosynthetic parameters. The N load adversely affected growth and photosynthetic parameters in the serpentine soil, while improved them in brown forest soil. Although the growth rate of hybrid larch F1 without N loading showed high potential as an afforestation species in serpentine region, increasing deposition of N might be a threat to the growth and photosynthesis of the hybrid larch F1 in serpentine soil.  相似文献   

6.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

7.
Anthropogenic deposition of reactive nitrogen (N) has increased during the 20th century, and is considered an important driver of shifts in ecosystem functions and biodiversity loss. The objective of the present study was to identify those ecosystem functions that best evidence a target ecosystem’s sensitivity to N deposition, taking coastal heathlands as an example. We conducted a three-year field experiment in heathlands of the island Fehmarn (Baltic Sea, North Germany), which currently are subject to a background deposition of 9 kg N ha−1 yr−1. We experimentally applied six levels of N fertilisation (application of 0, 2.5, 5, 10, 20, and 50 kg N ha−1 yr−1), and quantified the growth responses of different plant species of different life forms (dwarf shrubs, graminoids, bryophytes, lichens) as well as shifts in the C:N ratios of plant tissue and humus horizons. For an applicability of the experimental findings (in terms of heathland management and critical load assessment) fertilisation effects on response variables were visualised by calculating the treatment ‘effect sizes’. The current year’s shoot increment of the dominant dwarf shrub Calluna vulgaris proved to be the most sensitive indicator to N fertilisation. Shoot increment significantly responded to additions of ≥ 5 kg N ha−1 yr−1 already in the first year, whereas flower formation of Calluna vulgaris increased only in the high-N treatments. Similarly, tissue C:N ratios of vascular plants (Calluna vulgaris and the graminoids Carex arenaria and Festuca ovina agg.) only decreased in the highest N treatments (50 and 20 kg N ha−1 yr−1, respectively). In contrast, tissue C:N ratios of cryptogams responded more quickly and sensitively than vascular plants. For example, Cladonia spp. tissue C:N ratios responded to N additions ≥ 5 kg N ha−1 yr−1 in the second study year. After three years we observed an increase in cover of graminoids and a corresponding decrease of cryptogams at N fertilisation rates of ≥ 10 kg N ha−1 yr−1. Soil C:N ratios proved to be an inappropriate indicator for N fertilisation at least within our three-year study period. Although current critical N loads for heathlands (10−20 kg N ha−1 yr−1) were confirmed in our experiment, the immediate and highly sensitive response of the current year’s shoots of Calluna vulgaris suggests that at least some ecosystem functions (e.g. dwarf shrub growth) also might respond to low (i.e. < 10 kg N ha−1 yr−1) but chronic inputs of N.  相似文献   

8.
《Aquatic Botany》2005,82(2):121-131
Nutrient-use efficiency (NUE) within forests of the mangroves Rhizophora stylosa and Avicennia marina was estimated in arid Western Australia using litter fall rates and rates of leaf CO2 exchange. Litter fall rates ranged from 9.8 to 34.4 t DW ha−1 y−1 but equated to only 13–41% (mean = 30%) of net canopy primary production. Foliar N:P ratios were in most instances ≥16, suggesting P limitation. NUE for N based on litter fall rates were significantly less (NUEL = 167–322 g DW g−1 N) than those based on photosynthesis measurements (NUEP = 234–448 g DW g−1 N), suggesting that NUE estimates for nitrogen based on litter fall data are underestimates. NUEP estimates for N were significantly greater for R. stylosa than for A. marina. NUE for P were not significantly different, with NUEL ranging from 2905 to 5053 g DW g−1 P and NUEP ranging from 1632 to 4992 g DW g−1 P. Both sets of NUE are at the higher end of the range of estimates calculated for most other forests and equivalent to those for wet tropical mangroves. These arid-zone trees live in low-nutrient habitats, but it appears that selection on components of NUE (i.e. traits that reduce nutrient loss) rather than on NUE itself equates to a lack of clear patterns in NUE between different environments, emphasizing the flexible nature of nutrient allocation in woody plants. NUE in R. stylosa correlated inversely with mature leaf N and P content, implying that NUE in this species is maximized by the synthesis of low-nutrient leaves, i.e. a nutrient retention strategy, whereas such does not appear to be the case for A. marina. This strategy translates into a direct advantage in terms of net primary productivity for R. stylosa. This idea is supported by evidence of longer nutrient residence times for R. stylosa than for A. marina.  相似文献   

9.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

10.
Constructed wetlands are becoming increasingly popular worldwide for removing contaminants from domestic wastewater. This study investigated the removal efficiency of nitrogen (N) and phosphorus (P) from wastewater with the simulated vertical-flow constructed wetlands (VFCWs) under three different substrates (i.e., BFAS or blast furnace artificial slag, CBAS or coal burn artificial slag, and MSAS or midsized sand artificial slag), hydraulic loading rates (i.e., 7, 14, and 21 cm d?1), and wetland operational periods (0.5, 1, and 2 years) as well as with and without planting Canna indica L. The wastewater was collected from the campus of South China Agricultural University, Guangzhou, China. Results show that the percent removal of total P (TP) and ammonium N (NH4+-N) by the substrates was BFAS > CBAS > MSAS due to the high contents of Ca and Al in substrate BFAS. In contrast, the percent removal of total N (TN) by the substrates was CBAS > MSAS > BFAS due to the complicated nitrification/denitrification processes. The percent removal of nutrients by all of the substrates was TP > NH4+-N > TN. About 10% more TN was removed from the wastewater after planting Canna indica L. A lower hydraulic loading rate or longer hydraulic retention time (HRT) resulted in a higher removal of TP, NH4+-N, and TN because of more contacts and interactions among nutrients, substrates, and roots under the longer HRT. Removal of NO3?N from the simulated VFCWs is a complex process. A high concentration of NO3?N in the effluent was observed under the high hydraulic loading rate because more NH4+-N and oxygen were available for nitrification and a shorter HRT was unfavorable for denitrification. In general, a longer operational period had a highest removal rate for nutrients in the VFCWs.  相似文献   

11.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

12.
Phosphorus (P) retention by headwater ditch sediments adsorption plays a pivotal ecological role in P buffering in freshwater ecosystems. Previous studies focused on headwater ditch sediment adsorption and its P retention capacity in acid conditions, but little information is available for headwater ditches under alkaline condition. In this study, adsorption behavior of phosphorus was investigated in headwater ditch sediments under alkaline condition using a batch equilibrium technique, thus determining phosphorus retention capacity of headwater ditch sediments collected at 11 sites at base-flow on 2 March 2006 in purple soils area of China. Results showed that headwater ditch sediments had elevated phosphorus sorption maximum (Smax) values (122.72–293.23 mg P kg?1) and P binding energy (K) values (1.64–8.65 L mg?1), while they had low equilibrium phosphorus concentration (EPC0) (0.001–0.108 mg L?1) and degree of phosphorus saturation (DSP) (1.93–10.19%). Analysis of EPC0 and soluble P concentration indicated that sediments acted as a sink for P across all headwater ditches. Therefore, there were high intrinsic P retention capacities of headwater ditch sediments. Positive correlations of both K and Smax with oxalate-extractable Fe (r of 0.93 and 0.81, p < 0.05) and total carbon (TC) (r of 0.89 and 0.74, p < 0.05) were found, thus suggesting that organic matter and amorphous or poorly crystalline Fe would play dominant roles in P adsorption in the headwater ditch sediments under alkaline condition. Since neither Smax nor K were correlated with CCE (CaCO3) (r of 0.15 and ?0.06, p > 0.05), the high-energy sorptive surfaces of Fe oxides were more important than CaCO3 in P sorption of sediment under alkaline condition. At the same time, these poor correlations between CCE and K and Smax imply a non-linear relationship between P retention and the content of carbonate. The negative correlations of both K and Smax with pH (r of–0.73, and–0.58, p < 0.05) revealed that an increase in pH would not improve sediment retention capacity under alkaline conditions.  相似文献   

13.
《Process Biochemistry》2004,39(10):1223-1229
Partial nitrification to nitrite is technically feasible and economically favourable, especially when wastewaters contained high ammonium concentrations or low C/N ratios. Partial nitrification can be obtained by selectively inhibiting nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen (DO) concentrations. The effect of pH, DO levels and temperature on ammonia oxidation rate and nitrite accumulation was investigated in order to determine the optimal conditions for partial nitrification of synthetic wastewater with high ammonia concentration. The experiments performed at low DO levels to lower the total oxygen needed in the nitrification step, which means great saving in aeration. During the start-up stage pH and DO were set at 7.0–7.4 and 0.5 mg/l, respectively. The reactor was operated until complete partial nitrification was achieved. The effect of pH, DO on partial nitrification was studied, as pH was kept at 6.5, 7.5, 8.5, 9.5 and DO at 0.5±0.2, 1.5±0.2 and 2.5±0.2 mg/l, and temperature at 30 °C. The influence of temperature on ka value was studied by keeping pH=7.5, DO=1.5 mg/l and temperature was controlled at 12, 20 and 30 °C, respectively. The results showed that partial nitrification to nitrite was steadily obtained and the optimal operational parameters were pH=7.5, DO=1.5 mg/l, T=30 °C based on ammonia oxidation rate and nitrite accumulation rate. The maximum ka was achieved and to be 115.1×10−3 mg NH4+–N (mg VSS h)−1 under this condition.  相似文献   

14.
Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH2PO4) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH2PO4 kg?1 soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3 g P kg?1 dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH2PO4, glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP > KH2PO4 > G1P > IHP = AMP > no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.  相似文献   

15.
Hungate's method is a well-accepted protocol for the isolation or incubation of anaerobes with a roll tube technique. The aim of this study was to stimulate fungal enzyme production by optimizing the components of Hungate's medium for the growth of a rumen fungus Anaeromyces sp. YQ3. The organism was grown on corn stalks and incubated for 10 days in defined media with two glucose levels (G+, glucose in the Hungate's medium as a glucose control; G?, glucose removed in a modified Hungate's medium) and four N sources (N1: yeast extract + tryptone + (NH4)2SO4 in Hungate's medium (control); N2: yeast extract + (NH4)2SO4; N3: tryptone + (NH4)2SO4; and N4: tryptone + yeast extract). In the G? media, the recovered activities of feruloyl esterase (FAE) (P<0.0001), acetyl esterase (AE) (P=0.0065) and xylanase (P<0.0001) were decreased, while the G+ media with N1 nitrogen stimulated the production of FAE and xylanase (P<0.0001). The G? medium with N2 nitrogen increased the recovered activities of carboxymethyl cellulase (P=0.0001) and avicelase (P<0.0001), while the N3 and N4 media increased the recovered activity of AE (P=0.0015). The N4 medium was comparable to the N1 medium in stimulating the amount of recovered xylanase activity. The activities of FAE (P<0.0001), AE (P<0.0001), and xylanase (P<0.0001) showed a time-dependent increase and reached their peaks at day 10, while the avicelase activity peaked at day 8 (P=0.0071). The esterase activities (FAE and AE) were positively correlated with the enzyme activities of xylanase and carboxymethyl cellulase (r > 0.48, P<0.05). After a 10-day incubation, the glucose in the Hungate's media contributed to an increase in organic matter disappearance (P<0.0001) and volatile fatty acid (VFA) concentration (P<0.0001), except for molar acetate proportions. The N4 treatment increased organic matter disappearance and total VFA concentration (P=0.0002). The change in N source did not alter molar proportions of acetate, propionate and valerate, while the N2 treatment increased molar butyrate proportion (P<0.0035), and both N2 and N3 increased the molar proportion of branched chain VFAs (P<0.0041). In summary, the glucose in the Hungate's medium is beneficial for stimulating the production of esterases and xylanase, thereby promoting fungal growth. Amending the N source in Hungate's medium brings about different yields of rumen fungal esterases and polysaccharide hydrolases that have important nutritional impacts on fibre degradation in ruminant animals.  相似文献   

16.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

17.
A study was undertaken to examine the effects of the acidophilic strain 62BN (pH 5.5) and alkalophilic strain 97AN (pH 9.0) on remediation of cadmium and their subsequent effects on soybean (Glycine max var. PS-1347) in acidic and alkaline soils, respectively. The effect of cadmium on soybean plants was studied in acidic (pH 6.3 ± 0.2) and alkaline (8.5 ± 0.2) soil amended with 124 μM CdCl2 concentration, respectively, and the cadmium toxicity was evident from stunted growth, poor rooting, and cadmium accumulation in each case. Furthermore, 16S ribosomal DNA (rDNA) sequencing identified 62BN as a Pseudomonas putida strain and 97AN as a Pseudomonas monteilli strain. In situ studies showed that on seed bacterization, both the P. putida 62BN strain and P. monteilli 97AN strain were able to enhance plant growth in terms of agronomical parameters, in the presence of cadmium in acidic and alkaline soils, respectively. Apart from this, strain 62BN and 97AN reduced cadmium concentration in plant and soil significantly (p < 0.05) in their respective soil types. Further comparative analysis revealed that P. putida 62BN was more effective than P. monteilli 97AN strain in remediation of cadmium. The bacterial strains offer promise as inoculants to improve the growth of plants in the presence of toxic Cd concentrations in the environment with their optimum pH.  相似文献   

18.
Wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China were examined by using a combination of the satellite imageries and field experiments. Results showed that the conversions mainly occurred between dry lands and Phragmites australis–Suaeda salsaTamarix chinensis marshes (PSTMs). The total area of marsh wetland was reduced by 65.09 km2 during the period from 1986 to 2005, and these conversions might be attributed to a combination of farming, oil exploration and water extraction, as well as soil salinization. Significant differences were observed in bulk density, pH, salinity and NO3-N between different land-use types (P < 0.05). After the conversions from marsh wetlands to dry lands, bulk density, pH, salinity and NH4+-N decreased slightly, while a significant increase in NO3-N, TN (total nitrogen), and AP (available phosphorus) (P < 0.05) was observed. The more loss of soil nutrient storage also occurred after the maximal area conversion from PSTMs to dry lands compared to other conversions during the study period. The storages of soil organic matter, NH4+-N and total phosphorus decreased greatly under the conversion from three types of marshes to dry lands, while those of NO3-N, AP and TN showed an obvious increase during the whole study period.  相似文献   

19.
A transferase was isolated, purified and characterised from Aspergillus aculeatus. The enzyme exhibited a pH and temperature optima of 6.0 and 60 °C, respectively and under such conditions remained stable with no decrease in activity after 5 h. The enzyme was purified 7.1 fold with a yield of 22.3% and specific activity of 486.1 U mg?1 after dialysis, concentration with polyethyleneglycol (30%) and DEAE-Sephacel chromatography. It was monomeric with a molecular mass of 85 kDa and Km and Vmax values of 272.3 mM and 166.7 μmol min?1 ml?1. The influence of pH, temperature, reaction time, and enzyme and sucrose concentration on the formation of short-chain fructooligosaccharides (FOS) was examined by statistical response surface methodology (RSM). The enzyme showed both transfructosylation and hydrolytic activity with the transfructosylation ratio increasing to 88% at a sucrose concentration of 600 mg ml?1. Sucrose concentration (400 mg ml?1) temperature (60 °C), and pH (5.6) favoured the synthesis of high levels of GF3 and GF4. Incubation time had a critical effect on the yield of FOS as the major products were GF2 after 4 h and GF4 after 8 h. A prolonged incubation of 16 h resulted in the conversion of GF4 into GF2 as a result of self hydrolase activity.  相似文献   

20.
Arsenic (As) accumulation and photosynthesis occur simultaneously in plants under As exposure. We investigated the effects of As and induced-phytoextraction methods on photosynthesis in two As hyperaccumulators (Pteris vittata and Pteris cretica var. nervosa) and two non-hyperaccumulators (Pteris semipinnata and Pteris ensiformis) under soil culture conditions. Chlorophyll fluorescence parameters (the maximum [Fv/Fm] and actual quantum efficiency [FPSII]) and the activities of three photosynthetic enzymes (ATPase, ribulose-1, 5-bisphosphate carboxylase [RuBPC] and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) were measured. Arsenic accumulation and photosynthetic behaviours in response to enhanced-phytoextraction methods (trans-1, 2-cyclobexylenedinitrilotetraacetic acid [CDTA] and phosphorous [P] addition and soil pH adjustment) of P. cretica and P. semipinnata were monitored and compared under conditions of 100 mg As kg−1. Significant decreases in the Fv/Fm (19.9%) and FPSII (36.1%) were observed in P. vittata when exposed to 100 mg As kg−1 in comparison to the control (0 mg As kg−1). Compared to the control (0 mg As kg−1), the activities of GAPDH increased by 0.5% in P. cretica var. nervosa and decreased by only 8.3% in P. vittata even when both of them were treated with 200 mg As kg−1, whereas a significant decrease, 56.1% and 51.7%, of this enzyme was observed in P. semipinnata and P. ensiformis, respectively, when exposed to 50 mg As kg−1. Compared to the control (0 mg CDTA kg−1 or 0 mg P kg−1), the activities of ATPase increased by 53.7% and 82.7% in P. cretica when exposed to 0.5 g CDTA kg−1 and 50 mg P kg−1, respectively, and an increase of up to 175% was also observed in P. semipinnata when exposed to 600 mg P kg−1. The activities of GAPDH increased by 68.9% and 90.7% in P. cretica when exposed to 2 g CDTA kg−1 and 600 mg P kg−1, respectively, but a decrease of up to 60% was observed in P. semipinnata when exposed to 2 g CDTA kg−1. The uptake of As in P. semipinnata increased by 80.9% and 73.3% when 1 g CDTA kg−1 and 600 mg P kg−1 were added, respectively, compared to the control (0 g CDTA kg−1 or 0 mg P kg−1). It was concluded that GAPDH played an important role in the photosynthesis of As hyperaccumulators under As treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号