首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
石羊河中游沙漠化逆转过程土壤种子库的动态变化   总被引:1,自引:0,他引:1  
在石羊河中游,应用空间代替时间的方法,选择流动沙丘以及封育恢复5a、15a和25a的沙漠化逆转过程序列,研究了沙漠化逆转过程土壤种子库的变化特征。结果表明:石羊河中游沙漠化土地土壤种子库由4科12种植物组成,种子库主要分布于表层0-5cm。在沙漠化逆转过程中,土壤种子库物种数趋于增加,物种组成以1年生草本植物占优势逐渐向多年生草本植物和半灌木植物转变;种子库密度、表层土壤种子比例、物种多样性指数、与地上植被的相似性呈现先增大后降低趋势;沙漠化土地生态恢复间隔的时间越长,土壤种子库间的相似性程度越低;沙漠化土地与地带性植被区种子库的相似性逐渐增大,但是恢复25a沙漠化土地也仅达到0.36。研究认为,沙漠化逆转过程也是沙漠化土地土壤种子库向地带性植被土壤种子库演变的过程,而且是一个十分缓慢的过程,该研究有助于丰富干旱区土壤种子库的理论和指导干旱内陆河流域沙漠化土地的生态恢复实践。  相似文献   

2.
不同退化沙地土壤碳的矿化潜力   总被引:21,自引:0,他引:21  
通过实验室土壤培养试验 ,研究了科尔沁退化沙质草地不同生境 (流动沙地 ,半固定沙地 ,固定沙地和丘间低地 )下土壤碳的矿化潜力及不同凋落物在沙地土壤中的分解。经 33d的室内培养 ,不同生境土壤 CO2 - C的释放有极显著的差异 ,与生境植被盖度 ,凋落物积累 ,土壤沙化程度 ,土壤有机碳和全氮含量的分布有显著相关。流动沙地土壤有极低的土壤有机碳和氮的含量及其微弱的土壤微生物呼吸 ,表明土地沙漠化不仅导致土壤有机碳库衰竭 ,也使土壤微生物活性丧失。在有机质含量很低的流动沙地和半固定沙地土壤中 ,含氮量高的小叶锦鸡儿 (Caragana microphylla)凋落物比含氮量低、C/N比高的差巴嘎蒿(Artemisia halodendron)和 1年生植物凋落物有较快的分解。在沙漠化的演变中 ,土壤的粗粒化 ,有机物质和养分及微生物活性的丧失制约着凋落物在土壤中的矿化潜力。灌木的存在使更多的有机物质和养分积聚在灌丛下 ,形成灌丛肥岛 ,因而显著贡献于碳的固存。  相似文献   

3.
Quantitative methods were used to examine soil properties and their spatial heterogeneity in a 0-year fenced mobile dune (MD0), an 11-year fenced mobile dune (MD11) and a 20-year fenced mobile dune (MD20) in Horqin Sandy Land, Northern China. The objective of the study was to assess the effect of vegetation restoration on heterogeneity of soil properties in sand dunes and to provide a concept model to describe the relationship between vegetation succession and spatial heterogeneity variation of soil properties in the dunes. The results showed that the average values of vegetation cover, species number and diversity, soil organic carbon (C), total nitrogen (N), and electrical conductivity (EC) increased with the increase in fenced age of mobile dunes, while soil water content (0–20 cm) showed the reverse trend. Geostatistical analysis revealed that the spatial heterogeneity of soil organic C, total N, EC, very fine sand content, and soil water content (0–20 cm) increased from MD0 to MD11 with succession from sand pioneer plant to shrub species then decreased from MD11 to MD20 due to continuous development of herbaceous plants. Canonical correspondence analysis (CCA) showed that there was a relatively high correspondence between vegetation and soil factors, suggesting that the major gradients relating soil organic C, total N, EC, pH, slope, very fine sand content, and soil water content are the main factors for the distribution of dune plants and account for 68.1% of the species-environment relationship among the three sites. In addition, the distribution of the sand pioneer plant was positively related to the relative height of the sampling site and soil water content, and that of most herbaceous plants were determined by soil organic C, total N, EC, pH, and very fine sand content in mobile dunes. The conceptual model of relationship between vegetation succession and spatial heterogeneity of soil properties in mobile dunes suggests spatial patterns of soil properties are most strongly related to plant-induced heterogeneity in dune ecosystems prone to wind erosion, and conversely, the magnitude and degree of spatial heterogeneity in soil properties can influence the plant distribution pattern and vegetation succession of mobile dunes.  相似文献   

4.
科尔沁沙地沙漠化过程中土壤有机碳和全氮含量变化   总被引:4,自引:1,他引:3  
通过地面调查,研究了沙漠化对科尔沁沙地农田和草地土壤有机碳和全氮含量的影响.结果表明,随着沙漠化的发展,科尔沁沙地土壤碳、氮含量明显下降.和非沙漠化农田相比,轻度、中度、重度和严重沙漠化农田土壤有机碳和全氮含量分别下降12.3%和15.3%、22.2%和24.7%、39.5%和44.7%、64.4%和63.5%;和非沙漠化草地相比,轻度、中度、重度和严重沙漠化草地土壤有机碳和全氮含量分别下降了56.3%和48.7%、78.4%和74.4%、88.9%和84.6%、91.6%和84.6%.截至2000年,科尔沁沙漠化总面积已经达到50197.5 km2,由于沙漠化而导致的土壤有机碳和全氮损失总量分别为36.39 Mt和7.89 Mt,其中草地分别占91.12%和86.06%,农田分别占8.88%和13.94%.相关分析结果表明,土壤有机碳和全氮的损失主要源于风蚀所引起的土壤粘粉粒的减少.因此,在科尔沁沙地,防治土壤风蚀对于减少农田和草地土壤碳、氮损失极为重要.  相似文献   

5.
风蚀和沙埋赋予沙丘生态系统独特的自然物理和生物过程。沙丘生态系统种子库研究对于沙区植物多样性保护和生态恢复至关重要。但是人们对沙丘生态系统种子库的时空格局、形成机制和生态功能的认识还很肤浅。近些年, 沙丘生态系统种子库开始受到关注。该文对20年来沙丘生态系统种子库研究进行了回顾总结, 论述了沙丘生态系统种子库研究现状, 剖析了沙丘生态系统种子库现有结论, 阐述了沙丘生态系统种子库研究趋势与面临的挑战。沙丘生态系统种子库研究已获得以下认识: 1)沙丘生态系统类型、部位和深度决定种子库大小与组成; 2)沙丘生态系统种子库季节、年际变化受风沙活动和降水调控; 3)沙丘生态系统种子库受各种干扰的综合影响; 4)生境对沙丘生态系统种子库具有重要影响; 5)沙丘生态系统种子库结构和组成与植物繁殖对策密切关联; 6)种子库对沙丘生态系统植被恢复贡献率因沙丘类型而异。沙丘生态系统种子库研究应强化如下方面: 1)种子库区域分异规律研究; 2)种子库与植物生活史阶段的联系的研究; 3)多种干扰方式综合影响下的种子库研究; 4)种子库对沙丘生态系统植被恢复贡献的研究; 5)沙丘生态系统自然物理过程与种子库耦联关系的研究。  相似文献   

6.
毛乌素沙地油蒿群落的循环演替   总被引:28,自引:1,他引:27       下载免费PDF全文
郭柯 《植物生态学报》2000,24(2):243-247
流动沙地→半流动沙地白沙蒿群落→半固定沙地油蒿+白沙蒿群落→固定沙地油蒿群落→固定沙地油蒿+本氏针茅+苔藓群落→地带性的本氏针茅草原及其迅速沙化的植被发展过程是毛乌素沙地植被自发演替的基本过程。油蒿具有耐沙埋、抗风蚀、耐土壤贫瘠等特性,是该地区最主要的优良固沙植物和重要牧草。半固定、固定沙地池蒿群落在毛乌素沙地的生态环境保护和农牧业生产方面发挥着极其重要的作用,维持其稳定十分重要。然而,其沙化的现  相似文献   

7.
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air‐filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.  相似文献   

8.
Desertification has taken place in the overgrazed grassland of the Tibetan Plateau, China, and the area of mobile sandy land has increased in recent decades. The challenging problem about desertification control is how to restore the vegetation of mobile sandy lands caused by severe desertification. Sand drifting is now regarded as the limiting factor of vegetation restoration in such lands. The initial phase of vegetation restoration is plant colonization, but it is often aborted due to sand drifting, and then vegetation restoration fails to proceed. For the sake of revegetation, the first step is to stop sand drifting to ensure plant colonization. In the northeastern Tibetan Plateau, China, feasible approaches have been found through long-term experiments, and the vegetation is being restored satisfactorily with these approaches in experimental sandy lands. The approaches comprise three types: enclosure, mechanical barriers and biological barriers. Different sandy lands require dissimilar combinations of these approaches. Enclosures may be adequate to revegetate inter-dunes or degraded grassland even in cold regions like the Tibetan Plateau, China, but it is deficient for revegetation of the shifting sand dunes unless mechanical and biological barriers are established simultaneously.  相似文献   

9.
封育是退化沙地植被恢复与生态重建的重要措施, 理解长期处于封育状态下不同类型沙地植物群落特征变化及其影响因素有利于沙地植被恢复和生态重建。该文基于对科尔沁沙地长期封育的流动沙丘(2005年封育)、固定沙丘(1985年封育)和沙质草地(1997年封育)连续多年(2005-2017年)的植物群落调查, 结合土壤种子库、土壤养分以及气象数据, 分析了植物群落特征变化及其对环境变化的响应。研究结果表明流动沙丘植被盖度显著增加, 群落生物量和物种多样性年际间波动变化, 但无明显趋势; 固定沙丘植物群落存在逆行演替趋势, 具体表现为群落生物量、灌木和半灌木以及豆科优势度显著下降, 而一年生和多年生杂类草优势度显著增加; 沙质草地群落物种丰富度和多年生禾草优势度存在降低趋势, 并且一年生杂类草优势度明显高于其他功能群, 群落存在退化现象。3类沙地土壤种子密度变化不显著, 而种子丰富度在流动沙丘显著增加, 在固定沙丘和沙质草地有下降趋势, 土壤养分仅有有效氮和有效磷含量增加。回归分析结果表明气温和降水是影响年内生物量积累的主要因素, 但对年际间群落生物量和物种丰富度变化影响不大。除趋势对应分析结果显示土壤种子库与植物群落之间存在很高的相似性, 典型相关分析结果表明沙质草地植物群落与土壤养分紧密相关, 而固定沙丘群落主要与土壤水分紧密相关。综合以上结果可知, 封育33年的固定沙丘群落和封育21年的沙质草地群落都存在退化现象, 而封育11年的流动沙丘群落正在缓慢恢复, 因此封育年限的设定对退化沙地植被恢复至关重要, 封育时间过长不仅不利于植物群落恢复, 反而会使群落发生逆行演替, 建议封育年限的设定应综合考虑植被退化程度、土壤养分状况、土壤种子库基础以及气候条件等因素的影响。  相似文献   

10.
Desertification has taken place in the overgrazed grassland of the Tibetan Plateau,China,and the area of mobile sandy land has increased in recent decades.The challenging problem about desertification control is how to restore the vegetation of mobile sandy lands caused by severe desertification.Sand drifting is now regarded as the limiting factor of vegetation restoration in such lands.The initial phase of vegetation restoration is plant colonization,but it is often aborted due to sand drifting,and then vegetation restoration fails to proceed.For the sake of revegetation,the first step is to stop sand drifting to ensure plant colonization.In the northeastern Tibetan Plateau,China,feasible approaches have been found through long-term experiments,and the vegetation is being restored satisfactorily with these approaches in experimental sandy lands.The approaches comprise three types:enclosure,mechanical barriers and biological barriers.Different sandy lands require dissimilar combinations of these approaches.Enclosures may be adequate to revegetate inter-dunes or degraded grassland even in cold regions like the Tibetan Plateau,China,but it is deficient for revegetation of the shifting sand dunes unless mechanical and biological barriers are established simultaneously.  相似文献   

11.
The planting of sand‐binding vegetation in the Shapotou region at the southeastern edge of the Tengger Desert began in 1956. Over the past 46 years, it has not only insured the smooth operation of the Baotou–Lanzhou railway in the sand dune section but has also played an important role in the restoration of the local eco‐environment; therefore, it is viewed as a successful model for desertification control and ecological restoration along the transport line in the arid desert region of China. Long‐term monitoring and focused research show that within 4–5 years of establishment of sand‐binding vegetation, the physical surface structure of the sand dunes stabilized, and inorganic soil crusts formed by atmospheric dust gradually turned into microbiotic crusts. Among the organisms comprising these crusts are cryptogams such as desert algae and mosses. In the 46 years since establishing sand‐binding vegetation, some 24 algal species occurred in the crusts. However, only five moss species were identified, which was fewer than the species number in the crust of naturally fixed sand dunes. Other results of the planting were that near‐surface wind velocity in the 46‐year‐old vegetation area was reduced by 54.2% compared with that in the moving sand area; soil organic matter increased from 0.06% in moving sand dunes to 1.34% in the 46‐year‐old vegetation area; the main nutrients N, P, K, etc., in the desert ecosystem increased; soil physicochemical properties improved; and soil‐forming processes occurred in the dune surface layer. Overall, establishment of sand‐binding vegetation significantly impacted soil water cycles, creating favorable conditions for colonization by many herbaceous species. These herbaceous species, in turn, facilitated the colonization and persistence of birds, insects, soil animals, and desert animals. Forty‐six years later, some 28 bird species and 50 insect species were identified in the vegetated dune field. Thus, establishment of a relatively simple community of sand‐binding species led to the transformation of the relatively barren dune environment into a desert ecosystem with complex structure, composition, and function. This restoration effort shows the potential for short‐term manipulation of environmental variables (i.e., plant cover via artificial vegetation establishment) to begin the long‐term process of ecological restoration, particularly in arid climates, and demonstrates several techniques that can be used to scientifically monitor progress in large‐scale restoration projects.  相似文献   

12.
土壤有机碳动态:风蚀效应   总被引:10,自引:0,他引:10  
苏永中  赵文智 《生态学报》2005,25(8):2049-2054
土壤风蚀是引起土壤退化最广泛的形式和原因之一。土壤风蚀对土壤碳动态的影响机制一方面是土壤风蚀引起土壤退化使土壤生产力下降,输入土壤的碳数量减少;另一方面是富含有机碳的细粒物质直接移出系统。风蚀土壤碳的去向包括:(1)就近沉积,(2)沉积于水渠和河流,输入水体;(3)以粉尘形式运移,在远离风蚀区的地域沉积;(4)氧化释放至大气。风蚀引起土壤碳的迁移和沉积不仅导致土壤有机碳在地域间的再分布,使土壤性状的空间异质性增加,也显著改变了土壤系统中碳矿化的生物学过程。土壤有机碳的保持可以促进团聚体的形成,使土壤物理稳定性增加,减缓风蚀。对易风蚀土地进行退耕还林还草、实行保护性耕作等措施可以有效增加土壤碳的固存。  相似文献   

13.
进入21世纪以来, 中国荒漠化恢复取得显著成效, 荒漠化、沙化土地面积持续减少, 植被覆盖度大幅提升, 但关于植被恢复过程中生物多样性如何变化的研究不足, 这制约着对荒漠化恢复成效的全面评估。本文基于群落调查和叶功能性状(叶片厚度、叶片干物质含量、比叶面积和叶片密度)的测定, 分析了毛乌素沙地不同恢复阶段(半固定沙地、固定沙地、结皮覆盖沙地和草本植物覆盖沙地)的植物群落物种多样性、功能多样性和系统发育多样性特征。结果表明: (1)多数叶功能性状的系统发育信号不显著, 表明环境因子对研究区植物功能性状的塑造作用很强。(2)对于α多样性, 结皮覆盖沙地的物种多样性(Shannon-Wiener多样性, H)、物种丰富度(S)、功能丰富度(FRic)及系统发育多样性(PD)指数均显著低于其他恢复阶段, 而其他3个阶段间无显著差异; 这些指数间均显著正相关, 表明物种多样性、功能多样性和系统发育多样性在植被恢复过程中协同变化。(3) β多样性指数随恢复阶段间隔增加而逐渐增大, 表明物种组成、功能属性及系统发育关系随植被恢复持续变化, 且半固定沙地到固定沙地的群落物种组成、功能属性及系统发育关系更替最快, 导致群落间差异最大。(4)固定沙地、结皮覆盖沙地和草本植物覆盖沙地群落系统发育结构均趋向于发散, 表明竞争排斥是群落构建的主要驱动力; 而半固定沙地群落系统发育结构无一致规律, 表明群落构建可能受到生境过滤和竞争排斥的综合作用。研究结果可为植被建设与管理提供参考, 为毛乌素沙地生态保育和生物多样性的保护提供科学依据。  相似文献   

14.
《Ecological Engineering》2007,29(2):117-124
Desertification around oases is the major obstacle for sustainable development of oases in arid regions of northwest China. An effective way of maintaining the stability of oases is to recover the relatively stable ecological zone between an oasis and desert from the destroyed ecological rift zone. This paper presents a typical case of successful efforts in ecological restoration and desertified land reclamation of oasis–desert ecotone. On the basis of stabilization of mobile dunes and agricultural use of reclaimed land, some successful techniques including established straw checkerboards and planting drought-tolerant indigenous shrubs, leveling sand dunes and drawing water for irrigation, closing dunes for grass reservation were carried out in 1975. In the restoration area, a stable artificial protective forest system had been developed. Pedological analyses indicate that the fine particle fraction (silt and clay content) in 0–10 cm soil surface layer has been increased from 2.6% on the untreated mobile sandy land to 9.3–37.3% in the restoration areas, and correspondingly, soil organic C has been increased from 0.63 to 1.88–9.70 g kg−1 during the 28 years of restoration period. In these 28 years, a 10 cm depth of minero-organic topsoil in the irrigated Picea sylvestris forestland has been developed. It is also observed that sand transportation rate during sandstorm events has been significantly reduced. The increase of vegetation cover indicates a remarkable environmental improvement. Overall, the ecological restoration approach in this study is of practical significance for the rebuilding of rift zone ecosystem and maintenance of the stability of oasis in the arid regions of northwest China.  相似文献   

15.
 研究了科尔沁沙地小叶锦鸡儿(Caragana microphylla)人工固沙林在0、5、13、21和28年的一个时间序列上土壤理化性状和植物群落特征及其恢复动态。结果表明:1) 土壤肥力随着人工植被建立时间的延长而逐渐恢复,表现为土壤粘粉粒含量、持水性能、土壤有机碳(SOC)和全氮(N)含量、潜在土壤呼吸在时间梯度上的增加,以及土壤容重和pH值的下降,0~5 cm表层土壤的恢复显著高于5~20 cm土壤;2) 在人工植被建立和发育的早期阶段 (0~13年),土壤肥力恢复的速率明显高于群落后期的演替阶段(13~28年);3) 灌丛对土壤肥力有明显的富集效应,随着人工群落发育时间的延长,“肥岛”面积扩展,富集率降低;4) 随着土壤环境条件的改善,侵入的草本植物种类数量、植被盖度增加,简单的人工植被向复杂的灌草群落演变。  相似文献   

16.
沙漠化对科尔沁沙质草地生态系统碳氮储量的影响   总被引:1,自引:0,他引:1  
通过野外调查,研究了沙漠化对科尔沁沙质草地生态系统碳、氮储量的影响.结果表明:沙漠化对草地碳、氮含量和储量具有显著影响,随着草地沙漠化的进程,草地碳、氮含量和储量明显下降.与非沙漠化草地相比,轻度、中度、重度和严重沙漠化草地0~100cm深土壤有机碳和全氮含量分别下降了56.06%和48.72%、78.43%和74.36%、88.95%和84.62%、91.64%和84.62%,植物组分中的碳、氮含量分别下降了8.61%和6.43%、0.05%和25.71%、2.58%和27.14%、8.61%和27.86%;轻度、中度、重度和严重沙漠化草地地上植物组分中的碳、氮储量分别下降了25.08%和27.62%、30.90%和46.55%、73.84%和80.62%、90.89%和87.31%,0~100cm深地下植物组分中碳和全氮储量分别下降了50.95%和43.38%、75.19%和71.04%、86.76%和81.48%、91.17%和83.17%.2000年科尔沁沙地沙漠化草地总面积为30152.7km2,因沙漠化损失的碳、氮总储量高达107.53和9.97Mt.草地碳、氮含量的下降主要源于风蚀过程中土壤细颗粒的损失.土壤的粗化和贫瘠化最终导致了植物和凋落物中碳、氮储量的明显下降.  相似文献   

17.
沙质草地生境中大型土壤动物对土地沙漠化的响应   总被引:2,自引:0,他引:2  
刘任涛  赵哈林 《生态学报》2012,32(2):557-566
沙质草地沙漠化过程中土壤动物群落结构变化是沙漠化生物过程中的一个重要方面,对于掌握沙漠化过程中生物退化规律和提出合理沙漠化防治对策具有重要指导作用。选取处于不同沙漠化阶段的流动沙地、半流动沙地、半固定沙地、固定沙地和丘间低地5种生境类型,采用手拣法对其大型土壤动物群落进行了调查。共获得36个动物类群,属于8目32科,优势类群为蚁科,常见类群有22个类群,两个类群的个体数共占群落个体总数的93.33%;稀有类群有13个类群,其个体数占群落个体总数的6.67%。结果显示,丘间低地、固定沙地、半固定沙地和半流动沙地大型土壤动物群落个体数量、类群数和多样性显著高于流动沙地(P<0.05);固定沙地大型土壤动物生物量显著高于其它生境类型(P<0.05);沙质草地严重沙漠化显著地影响大型土壤动物多样性及其生物量。并且,不同土壤动物类群个体对不同沙漠化阶段生境的适应性存在一定差异,产生了不同的响应模式。土壤有机碳和酸碱度以及土壤含水量差异是影响大型土壤动物类群分布与生长的主要因素。研究表明,固定沙地是大型土壤动物的适宜沙地生境,具有较多的个体数量和较高的生物量;丘间低地、半固定沙地、半固定沙地和流动沙地影响大型土壤动物存活,其个体数量和生物量较低。  相似文献   

18.
民勤绿洲-荒漠过渡区水量平衡规律研究   总被引:24,自引:3,他引:21  
王兵  崔向慧 《生态学报》2004,24(2):235-240
以甘肃省民勤县刘家地村外缘的绿洲 -荒漠过渡地带为定位研究区域 ,利用长期调查和水文学研究方法从生态系统的角度对绿洲 -荒漠过渡区的水量平衡特别是土壤水分和蒸散量的时空格局与动态特征进行了研究。结果显示 :1沿绿洲至流动沙丘这一过渡带 ,随着与绿洲距离的逐渐拉大 ,土壤含水量减小 ,0~ 80 cm土层的月平均土壤含水量的大小顺序为红柳沙包(5 .6 1% ) >白刺沙包 (5 .4 7% ) >流动沙丘 (5 .2 2 % ) ;土壤水分垂直变化规律是由表层到深层依次递增。 2在蒸散日进程中 ,红柳沙包和白刺沙包的蒸散率峰值到来时间比流动沙丘早 1~ 2 h,且日最大蒸散速率大小顺序为红柳沙包 (0 .2 4 mm / h) >白刺沙包 (0 .2 0 m m/ h) >流动沙丘 (0 .18mm/ h) ;影响绿洲荒漠 -过渡区蒸散的主要气象因子为日照百分率、气温、空气饱和差以及风速等 ,它们与日蒸散量的斜率关联度分别为 0 .717、0 .6 4 3、0 .6 4 9和 0 .70 5。3生态系统总的水量平衡特点是 ,水分输入主要靠降水和土壤水分的水平运动补给 ,而土壤和植被蒸发散是系统的主要输出项。  相似文献   

19.
To understand the contemporary process of desertification in the Mu-Us Sandy Land, China, we assessed the current status of desertification from satellite images. We analyzed the effect of land use by comparing desertification images and GIS-based thematic data. Socioeconomic factors were studied through interviews with local people. The desertified area ratio in each village was related to the sand dune ratio. Desertification in this region was affected by the activity of sand dunes. The revegetated area ratio had a close relationship with the cropland ratio. The development of cropland and surrounding woods contributed to revegetation of desertified land. Desertified areas were distributed mainly in pastoral regions. Critical carrying capacity of grassland for sheep and goats was approximately 2 head/ha. High population density of goats was evident in the severely desertified ranges. Goats were increasingly introduced to earn money through modernization, but they overgrazed fenced pastures. Further environmental education is needed to promote sustainable land use.  相似文献   

20.
The rain-fed sand-binding vegetation which stabilizes the migrating desert dunes in the Shapotou area at the southeastern edge of the Tengger Desert was initiated in 1956. The shrubs initially employed were predominantly Caragana korshinskii, Hedysarum scoparium, and Artemisia ordosica, and a desert shrub ecosystem with a dwarf shrub and microbiotic soil crust cover on the stabilized sand dunes has since developed. Since 1956 the success of this effort has not only ensured the smooth operation of the Baotou–Lanzhou railway in the sand dune area but has also played an important role in the restoration of the local eco-environment; therefore, it is viewed as a successful model for desertification control and ecological restoration along the transport infrastructure in the arid desert region of China. Some of the effects of recovery from desertification and ecological restoration on soil properties are shown by the increase in the distribution of fine soil particles, organic matter, and nutrients. The physical surface structure of the stabilized sand dunes, and inorganic soil crusts formed by atmospheric dust, have also led to the gradual formation of microbiotic soil crusts. Sand dune stabilization is associated with: (1) decreased soil particle size, (2) increased total N, (3) increased thickness of microbiotic crusts, (4) increased thickness of subsoil, and (5) an increase in volumetric soil moisture in the near-surface environment. After 17 years of dune stabilization, both the number of shrubs and community biomass decreased. The number of microbes, plant species and vegetation cover, all attained a maximum after the dunes had stabilized for 40 years. There is a significant positive correlation between the fractal dimension of soil particle size distribution (PSD) and the clay content of the shallow soil profile in the desert shrub ecosystem; the longer the period of dune stabilization, the greater the soil clay content in the shallow soil profiles (0–3 cm), and the greater the fractal dimension of soil PSD. This reflects the fact that during the revegetation processes, the soil structure is better developed, especially in the upper profile. Hence, the migrating sand dune becomes more stabilized. Therefore, the fractal model can be used to describe the texture and fertility of the soil, and, along with the degree of stability of the previously migrating sand dunes, can be used as an integrated quantitative index to evaluate the revegetation practice in the sand dune areas and their stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号