首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The maturation and growth pattern of the fluvial eight-barbel loach Lefua sp. (Japanese name: nagare-hotoke-dojo), an endangered species, was investigated using an individual identification-recapture method from 1995 to 1998 in an upper reach of a headwater tributary of the Kako River, Hyogo Prefecture, Japan. Based on observations of the gonads through the abdominal skin, the loach was estimated to breed mostly from May to July. All the males matured by age 1+, and all the females matured by age 2+. Gamete release in all individuals of both males and females was predicted from recaptured loaches during each breeding season. The standard length of mature females was significantly larger than that of males, showing sexual size dimorphism (SSD). The maximum sizes recorded were 75.4 mm SL for females and 61.2 mm SL for males. Both males and females of immature specimens grew mainly from May to November, including the breeding season, with no significant differences in growth rates between them. After sexual maturity, both males and females grew mainly from July to October (or November), after the breeding season, and the females exhibited higher growth rates than males. Therefore, SSD of the species seems to be attributable to the different growth rates after maturity. The longevity of the loach was estimated to exceed ten years based on individual growth patterns of various sizes during the survey period. It is likely that the loach has an iteroparous life history, breeding every year, and moderate growth rates after maturity.  相似文献   

2.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

3.
Fishery‐independent sampling was used to determine growth patterns, life span, mortality rates and timing of maturation and sex change in 12 common parrotfishes (Labridae: tribe Scarinae) from five genera (Calotomus, Cetoscarus, Chlorurus, Hipposcarus and Scarus) in Micronesia. Interspecific variation in life‐history traits was explored using multivariate analysis. All species displayed strong sex‐specific patterns of length‐at‐age among which males reached larger asymptotic lengths. There was a high level of correlation among life‐history traits across species. Relationships between length‐based and age‐based variables were weakest, with a tenuous link between maximum body size and life span. Cluster analysis based on similarities among life‐history traits demonstrated that species were significantly grouped at two major levels. The first grouping was driven by length‐based variables (lengths at maturity and sex change and maximum length) and separated the small‐ and large‐bodied species. Within these, species were grouped by age‐based variables (age at maturity, mortality and life span). Groupings based on demographic and life‐history features were independent of phylogenetic relationships at the given taxonomic level. The results reiterate that body size is an important characteristic differentiating species, but interspecific variation in age‐based traits complicates its use as a life‐history proxy. Detailed life‐history metrics should facilitate future quantitative assessments of vulnerability to overexploitation in multispecies fisheries.  相似文献   

4.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

5.
The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life‐history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice‐covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper.  相似文献   

6.
Marcus  Vivien  Weeks  Stephen C. 《Hydrobiologia》1997,359(1-3):213-221
We examined the relationship between pond duration and life history characters of the clam shrimp Eulimnadia texana, a species inhabiting ephemeral ponds in southwestern North America. Since the shrimp live in temporary habitats, we predicted that there should be high selection pressure on life history characteristics associated with rapid development (e.g., fast growth, early maturity, etc.), rather than selection for increased longevity. Pond duration was estimated using a combination of average monthly rainfall and pond size (surface to volume ratio). Shrimp that live in smaller ponds (high surface to volume ratio)in areas with low average rainfall should, on average, experience a shorter total time available for development than those in larger ponds or in areas of higher rainfall. These shrimp should have an earlier age at maturity, reduced longevity, lower fecundity, and faster growth. Five replicate populations of clam shrimp were collected as cysts from five ponds. These shrimp were raised in a common garden experiment in the laboratory. Daily measurements of growth and egg production were taken and ages at maturity and death were recorded. Shrimp from areas with higher average rainfall had slower growth, higher fecundity, greater longevity, and an earlier age at maturity than those from areas with lower average rainfall. If average rainfall is an accurate measure of pond duration, then the first three of these life history traits differ in the directions expected. However, age at maturity varied in a manner opposite to that expected, being earlier in the ponds with longer duration. Surface to volume ratio was not helpful in further resolving differences in these life history characters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Based on published data, we reviewed clinal variations in life-history characteristics of anadromous brown trout Salmo trutta from 102 European rivers at latitudes between 54 and 70° N. Growth rate in fresh water, mean smolt age, mean sea age at first sexual maturity, proportion of repeal spawners among adults, longevity, and length of adult life span exhibited latitudinal clines. Brown trout grew faster in fresh water, smolted and matured younger, lived fewer years but spawned more times in the south than in the north. The life-history traits studied were often correlated. Longevity, smolt age and sea age at maturity were negatively and smolt length and proportion of repeat spawners among adults were positively correlated with growth rate in fresh water. Longevity was positively correlated with smolt age and sea age at maturity. The latter also increased with increasing smolt age. None of these significant correlations among life history variables, except for those between smolt age and parr growth and proportion of repeat spawners and parr growth, are latitudinal effects. We do not know to what extent the latitudinal variation in life–history traits reflects phenotypic plasticity and to what extent it is caused by inherited differences among populations.  相似文献   

8.
The amount of resources available during development often affects body size, causing phenotypic variation in life‐history traits and reproductive behaviours. However, past studies have seldom examined the reaction norms of both life‐history and behavioural traits versus body size. We measured the phenotypic plasticity of several life‐history (age‐specific egg load, egg size, longevity) and behavioural (oviposition rate, host marking rate, walking speed) traits of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) in response to body size variation. We predicted that life‐history traits would show more evidence of size compensation than behavioural traits, resulting in fewer positively‐sloped size versus trait reaction norms among the former. As predicted by life‐history models, smaller wasps appear to shift resource allocation towards early‐life reproduction, having a similar egg load to large individuals 9 days after emergence. Surprisingly, longevity was unaffected by body size. However, egg size, the number of offspring produced during oviposition bouts, and the rate of subsequent egg synthesis were greater for larger individuals. In addition, as predicted, the reaction norms of behavioural traits versus body size were all positively sloped. Thus, despite possible adaptive compensatory plasticity of life‐history traits by small individuals, behavioural constraints directly related to body size would contribute to maintaining a positive size–fitness relationship.  相似文献   

9.
Resource availability constrains the life history strategies available to organisms and may thereby limit population growth rates and productivity. We used this conceptual framework to explore the mechanisms driving recently reported negative relationships between fish productivity and dissolved organic carbon (DOC) concentrations in lakes. We studied populations of bluegill (Lepomis macrochirus) in a set of lakes with DOC concentrations ranging from 3 to 24 mg/L; previous work has demonstrated that primary and secondary productivity of food webs is negatively related to DOC concentration across this gradient. For each population, we quantified individual growth rate, age at maturity, age‐specific fecundity, maximum age, length‐weight and length‐egg size relationships, and other life history characteristics. We observed a strong negative relationship between maximum size and DOC concentration; for instance, fish reached masses of 150 to 260 g in low‐DOC lakes but <120 g in high‐DOC lakes. Relationships between fecundity and length, and between egg size and length, were constant across the DOC gradient. Because fish in high‐DOC lakes reached smaller sizes but had similar fecundity and egg size at a given size, their total lifetime fecundity was as much as two orders of magnitude lower than fish in low‐DOC lakes. High DOC concentrations appeared to constrain the range of bluegill life history strategies available; populations in high‐DOC lakes always had low initial growth rates and high ages at maturity, whereas populations in low‐DOC showed higher variability in these traits. This was also the case for the intrinsic rates of natural increase of these populations, which were always low at the high end of the DOC gradient. The potentially lower capacity for fish populations in high‐DOC lakes to recover from exploitation has clear implications for the sustainable management of recreational fisheries in the face of considerable spatial heterogeneity and ongoing temporal change in lake DOC concentrations.  相似文献   

10.
High‐latitude lakes are particularly sensitive to the effects of global climate change, demonstrating earlier ice breakup, longer ice‐free seasons, and increased water temperatures. Such physical changes have implications for diverse life‐history traits in taxa across entire lake food webs. Here, we use a five‐decade time series from an Alaskan lake to explore effects of climate change on growth and reproduction of a widely distributed lacustrine fish, the three‐spine stickleback (Gasterosteus aculeatus). We used multivariate autoregressive state‐space (MARSS) models to describe trends in the mean length for multiple size classes and to explore the influence of physical (date of ice breakup, surface water temperature) and biological (density of con‐ and heterospecifics) factors. As predicted, mean size of age 1 and older fish at the end of the growing season increased across years with earlier ice breakup and warmer temperatures. In contrast, mean size of age 0 fish decreased over time. Overall, lower fish density and warmer water temperatures were associated with larger size for all cohorts. Earlier ice breakup was associated with larger size for age 1 and older fish but, paradoxically, with smaller size of age 0 fish. To explore this latter result, we used mixing models on age 0 size distributions, which revealed an additional cohort in years with early ice breakup, lowering the mean size of age 0 fish. Moreover, early ice breakup was associated with earlier breeding, evidenced by earlier capture of age 0 fish. Our results suggest that early ice breakup altered both timing and frequency of breeding; three‐spine stickleback spawned earlier and more often in response to earlier ice breakup date. While previous studies have shown the influence of changing conditions in northern lakes on breeding timing and growth, this is the first to document increased breeding frequency, highlighting another pathway by which climate change can alter the ecology of northern lakes.  相似文献   

11.
J. Bengtsson  B. Baur 《Oecologia》1993,94(1):17-22
We examine whether pioneer species of terrestrial gastropods (snails and slugs) possess particular life history traits commonly associated with r-selection, using data on gastropod colonization in four areas in north-west Europe (the Kvarken and Tvärminne archipelagos in the Baltic, polder woods in IJsselmeer, and a rehabilitated quarry near Maastricht). Data on age at first reproduction, longevity, clutch size, egg size and lifetime fecundity were gathered from the literature. In order to control for potentially confounding effects of body size on life history traits, we compared the residuals from the allometric relations between life history traits and body size for pioneers and non-pioneers. In snails, all life history traits examined were related to body size. In slugs, all traits except age at first reproduction scaled with body size. Body sizes did not differ between pioneers and non-pioneers in any area. In all four areas, there were no significant differences between pioneers and non-pioneers in any of the life history traits examined, after body size had been taken into account. This indicates that pioneer terrestrial gastropods generally cannot be regarded as r-selected. Pioneer species may possess any of several life history strategies, and the combinations of traits shown by them may have little in common with the r-K selection concept.  相似文献   

12.
The trajectory of an animal''s growth in early development has been shown to have long-term effects on a range of life-history traits. Although it is known that individual differences in behaviour may also be related to certain life-history traits, the linkage between early growth or development and individual variation in behaviour has received little attention. We used brief temperature manipulations, independent of food availability, to stimulate compensatory growth in juvenile three-spined sticklebacks Gasterosteus aculeatus. Here, we examine how these manipulated growth trajectories affected the sexual responsiveness of the male fish at the time of sexual maturation, explore associations between reproductive behaviour and investment and lifespan and test whether the perceived time stress (until the onset of the breeding season) influenced such trade-offs. We found a negative impact of growth rate on sexual responsiveness: fish induced (by temperature manipulation) to grow slowest prior to the breeding season were consistently quickest to respond to the presence of a gravid female. This speed of sexual responsiveness was also positively correlated with the rate of development of sexual ornaments and time taken to build a nest. However, after controlling for effects of growth rate, those males that had the greatest sexual responsiveness to females had the shortest lifespan. Moreover, the time available to compensate in size before the onset of the breeding season (time stress) affected the magnitude of these effects. Our results demonstrate that developmental perturbations in early life can influence mating behaviour, with long-term effects on longevity.  相似文献   

13.
1. We collated information from the literature on life history traits of the roach (a generalist freshwater fish), and analysed variation in absolute fecundity, von Bertalanffy parameters, and reproductive lifespan in relation to latitude, using both linear and non-linear regression models. We hypothesized that because most life history traits are dependent on growth rate, and growth rate is non-linearly related with temperature, it was likely that when analysed over the whole distribution range of roach, variation in key life history traits would show non-linear patterns with latitude.
2. As fecundity depends strongly on length, and the length structure of females varied among populations, latitudinal patterns in fecundity were examined based on residuals from the length–fecundity relationship. The reproductive lifespan of roach was estimated as the difference between age at maturity and maximum age of females in each population.
3. The three life history traits of roach analysed all varied among populations and were non-linearly related to latitude. Only the relationship between reproductive lifespan and latitude was a better fit to a linear that to a quadratic model, although Loess smoothing curves revealed that this relationship was actually closer to biphasic than linear in form. A latitude of 50°N formed a break point in all three life history traits.
4. The negative relationships we have described between (i) fecundity and reproductive lifespan and (ii) fecundity and egg mass suggest that lower fecundity is compensated for by longer lifespan, while lower fecundity is compensated for by an increased egg mass, when analysed independently of location.  相似文献   

14.
Although the life history traits of Nile tilapia, Oreochromis niloticus have been studied since the early 20th century, the potential range of life history parameters in unexploited populations and geographical variability in life history traits are still poorly understood. We explored life history traits (age composition, growth rate, mortality, size, and age at maturity) of an invasive and unexploited population in the Tabaru River, Yonaguni-jima Island, southwestern Japan, through comparisons with exploited populations across the species’ global distribution. Analysis of sectioned otoliths from 307 fish revealed that growth and maximum age were sexually dimorphic (females growing less but having greater longevity). Large-scale comparisons with exploited populations revealed that the unexploited Tabaru River population had a greater life span than exploited populations in other regions, but the growth rate was in the middle of the range of observed values. Although a high variation in life history parameters was observed among populations (L , K, maximum age), we found no significant variation in life history traits by latitude or between African and non-African populations. Such a combination of long life span and high variability in life history traits in response to environmental and fishing pressures may aid the success of non-native Nile tilapia in various environments.  相似文献   

15.
Examining factors that operate outside the breeding season may provide new insights into life‐history traits such as egg size, in which individual variation has not been fully explained. We measured corticosterone (CORT) levels and δ15N values (trophic level) in feathers grown several months before egg‐laying to test the prediction that a female's physiological state and feeding behaviour prior to the breeding season can influence egg mass in Atlantic Puffins Fratercula arctica. As predicted, egg mass increased with both CORT and δ15N values in feathers, suggesting that the ability of female Puffins to meet the nutritional costs of egg production is related to CORT promoting increased foraging effort during moult and to consumption of a higher trophic‐level diet.  相似文献   

16.
Synopsis We compared life-history traits such as fecundity, sex ratio, reproductive cycle, age at sexual maturity, embryonic period, egg size, early growth and morphology in two clonal strains (PAN-RS and DAN) of the mangrove killifish, Rivulus marmoratus, under constant rearing conditions. We found a positive relationship between growth and reproductive effort. Fecundity was significantly higher in the PAN-RS strain than in the DAN strain. The sex ratio was significantly different, with DAN producing more primary males than PAN-RS. Spawning and ovulation cycle did not clearly differ between the strains. PAN-RS showed a significantly higher growth rate than DAN from 0 to 100 days after hatching, however, age at sexual maturity, embryonic period, egg size, and morphometric and meristic characteristics (vertebral and fin-ray counts) did not differ between the two strains. The high fecundity of PAN-RS may provide an increased chance of offspring survival, while the attainment of sexual maturity at a smaller size in DAN may allow them to invest earlier in reproduction to increase breeding success. Variations in the life-history traits of PAN-RS and DAN may be adaptive strategies for life in their natural habitat, which consists of mangrove estuaries with a highly variable environment.  相似文献   

17.
In this study, I examine the effects of natural and experimentally induced variation in life cycle timing on offspring fitness in Arphia sulphurea and Chortophaga viridifasciata, to understand the selective pressures shaping phenology in these two species of nymph-overwintering grasshoppers. Because these species lack embryonic diapause, hatching varies over a two month range under natural conditions. I used a cold treatment to delay hatching of some egg pods and extend the natural range of hatching dates. Due to the shorter time for growth and poorer growing conditions late in the fall, late-hatching nymphs of both species grew to a smaller size before winter and suffered higher overwinter mortality, compared to early nymphs. In addition, late nymphs that did survive the winter became reproductive later in the following year's breeding season. Size- dependent mortality of offspring during the winter is a strong selective pressure favoring early reproduction in these species. Female adult life history traits appear responsive to the seasonal declines in offspring fitness, in that late-maturing females began reproducing sooner after adult maturation and reproduced at a more rapid rate, even at the expense of having shorter adult longevity and producing fewer total egg pods. Experimental manipulations were crucial in understanding the fitness consequences of intrapopulation variation in the timing of specific life-cycle events for these species.  相似文献   

18.
Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.  相似文献   

19.
1. Life‐history theory predicts a trade‐off between the resources allocated to reproduction and those allocated to survival. Early maturation of eggs (pro‐ovigeny) is correlated with small body size and low adult longevity in interspecific comparisons among parasitoids, demonstrating this trade‐off. The handful of studies that have tested for similar correlations within species produced conflicting results. 2. Egg maturation patterns and related life‐history traits were studied in the polyembryonic parasitoid wasp, Copidosoma koehleri (Hymenoptera: Encyrtidae). Although the genus Copidosoma was previously reported to be fully pro‐ovigenic, mean egg loads of host‐deprived females almost doubled within their first 6 days of adulthood. 3. The initial egg‐loads of newly emerged females were determined and age‐specific realised fecundity curves were constructed for their clone‐mate twins. The females' initial egg loads increased with body size, but neither body size nor initial egg load was correlated with longevity and fecundity. 4. The variation in initial egg loads was lowest among clone‐mates, intermediate among non‐clone sisters and highest among non‐sister females. The within‐clone variability indicates environmental influences on egg maturation, while the between‐clone variation may be genetically based. 5. Ovaries of host‐deprived females contained fewer eggs at death (at ~29 days) than on day 6. Their egg loads at death were negatively correlated with life span, consistent with reduced egg production and/or egg resorption. Host deprivation prolonged the wasps' life span, suggesting a survival cost to egg maturation and oviposition. 6. It is concluded that adult fecundity and longevity were not traded off with pre‐adult egg maturation.  相似文献   

20.
1. The response of a species to environmental disturbance is largely mediated by its life history traits that have evolved within a particular habitat template. Altered flow seasonality, as a direct consequence of river regulation, is a major environmental disturbance and has been implicated in the redistribution of a range of riverine organisms. An understanding of the reasons for species‐specific responses, however, has proved elusive. 2. Here, we investigated the reproduction of three riverine shrimp species (Paratya australiensis, Caridina mccullochi and Macrobrachium australiense) that show contrasting patterns in distribution and abundance in regulated Australian rivers. 3. In all three species, breeding females were largest, and fecundity was greatest early in the breeding season (November–December). Fecundity and egg size subsequently declined, with lower investment (overall and per offspring) perhaps indicating that conditions for larvae were more favourable later in the breeding season (a time normally characterised by low flow, warm water and high productivity). 4. Interspecific differences in absolute values of reproductive traits were, however, striking. Paratya australiensis has typically ‘opportunistic’ traits (small body size, small eggs and high fecundity), whereas M. australiense has more ‘equilibrium’ traits (larger body size, larger eggs and moderate fecundity). Caridina mccullochi is intermediate, having neither high fecundity nor large size, and has limited swimming ability when young. This species is now absent from at least one heavily regulated river in south‐eastern Australia, and we hypothesise that its life history may explain this absence. 5. Studies involving aspects of life history, such as reproductive traits, are likely to improve our understanding of a range of organisms and assist in the management of disturbed or altered environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号