首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Substructure of sea urchin egg cytoplasmic dynein   总被引:2,自引:0,他引:2  
The substructure of the cytoplasmic dynein molecule was studied using the quick-freeze, deep-etch technique. Cytoplasmic dynein purified as a 12 S form from the eggs of the sea urchin Hemicentrotus pulcherrimus was composed of a single high molecular weight polypeptide. Rotary shadowing images of cytoplasmic dynein either sprayed on to a mica surface or quick-frozen on mica flakes demonstrated a single-headed molecule, in contrast to the two-headed molecule of sea urchin sperm flagellar 21 S dynein. More detailed substructure was visualized by rotary shadowing after quick-freeze deep-etching. Cytoplasmic dynein consisted of a head and a stem. The head was pear-shaped (16 nm X 11 nm) and a little smaller than the pear-shaped head of 21 S dynein (18 nm X 14 nm). The form of the stem was irregular, and its apparent length varied from 0 to 32 nm. Binding of cytoplasmic dynein to brain microtubule in the solution was observed by negative staining, and that in the precipitate was examined by the quick-freeze, deep-etch method as well. Both methods revealed the presence of two kinds of microtubules, one a fully decorated microtubule and the other a non-decorated microtubule. Cytoplasmic dynein bound to microtubule also appeared as a globular particle. Neither the periodic binding nor the crossbridges that were observed with 21 S dynein were formed by cytoplasmic dynein, although cytoplasmic dynein appeared to bind to microtubules co-operatively.  相似文献   

2.
Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.  相似文献   

3.
Calpactin I complex, a calcium-dependent phospholipid-binding protein, promotes aggregation of chromaffin vesicles at physiological micromolar calcium ion levels. Calpactin I complex was found to be a globular molecule with a diameter of 10.7 +/- 1.7 (SD) nm on mica. When liposomes were aggregated by calpactin, quick-freeze, deep-etching revealed fine thin strands (6.5 +/- 1.9 [SD] nm long) cross-linking opposing membranes in addition to the globules on the surface of liposomes. Similar fine strands were also observed between aggregated chromaffin vesicles when they were mixed with calpactin in the presence of Ca2+ ion. In cultured chromaffin cells, similar cross-linking short strands (6-10 nm) were found between chromaffin vesicles and the plasma membrane after stimulation with acetylcholine. Plasma membranes also revealed numerous globular structures approximately 10 nm in diameter on their cytoplasmic surface. Immunoelectron microscopy on frozen ultrathin sections showed that calpactin I was closely associated with the inner face of the plasma membranes and was especially conspicuous between plasma membranes and adjacent vesicles in chromaffin cells. These in vivo and in vitro data strongly suggest that calpactin I complex changes its conformation to cross-link vesicles and the plasma membrane after stimulation of cultured chromaffin cells.  相似文献   

4.
Rhogocytes (pore cells) are specific molluscan cell types that are scattered throughout the connective tissues of diverse body parts. We have identified rhogocytes in large numbers in tissue taken from mantle, foot and midgut gland of the abalone Haliotis tuberculata (Vetigastropoda). Within cisternae of the endoplasmic reticulum, particles are visible that resemble, in shape and size, hemocyanin molecules, the respiratory protein of many molluscs. Immunohistochemical experiments using hemocyanin-specific antibodies demonstrated that these cells contain hemocyanin. In situ hybridization with a cDNA probe specific for Haliotis hemocyanin showed that hemocyanin-specific mRNA is present in rhogocytes, which confirmed that they are the site of hemocyanin biosynthesis in this gastropod. A possible path of hemocyanin release into the hemolymph is discussed. Also in the vetigastropod Megathura crenulata, many rhogocytes could be detected. However, they lacked hemocyanin molecules which, together with published data, indicates a seasonal expression of hemocyanin in this animal.  相似文献   

5.
Structure-function relationships in a molluscan hemocyanin have been investigated by determining the crystal structure of the Rapana thomasiana (gastropod) hemocyanin functional unit RtH2e in deoxygenated form at 3.38 A resolution. This is the first X-ray structure of an unit from the wall of the molluscan hemocyanin cylinder. The crystal structure of RtH2e demonstrates molecular self-assembly of six identical molecules forming a regular hexameric cylinder. This suggests how the functional units are ordered in the wall of the native molluscan hemocyanins. The molecular arrangement is stabilized by specific protomer-to-protomer interactions, which are probably typical for the functional units building the wall of the cylinders. A molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins is proposed on the basis of the molecular interactions between the protomers. In particular, the deoxygenated RtH2e structure reveals a tunnel leading from two opposite sides of the molecule to the active site. The tunnel represents a possible entrance pathway for dioxygen molecules. No such tunnels have been observed in the crystal structure of the oxy-Odg, a functional unit from the Octopus dofleini (cephalopod) hemocyanin in oxygenated form.  相似文献   

6.
The complete amino acid sequence of the Megathura crenulata hemocyanin functional unit KLH2-c was determined by direct sequencing and matrix-assisted laser desorption ionization mass spectrometry of the protein, and of peptides obtained by cleavage with EndoLysC proteinase, chymotrypsin and cyanogen bromide. This is the first complete primary structure of a functional unit c from a gastropod hemocyanin. KLH2-c consists of 420 amino acid residues. Circular dichroism spectra indicated approx. 31% beta-sheet and 29% alpha-helix contents. A multiple sequence alignment with other molluscan hemocyanin functional units revealed average identities between 41 and 49%, but 55% in case of Octopus hemocyanin functional unit c which is the structural equivalent to KLH2-c. KLH2-c has a molecular mass of approx. 48 kDa as calculated from its sequence and a measured mass of approx. 56 kDa; the mass difference is attributed to the sugar side chains usually decorating molluscan hemocyanin. However, inspection of the sequence of KLH2-c revealed no potential N-linked carbohydrate attachment sites, and this was supported by its inability to bind concanavalin A. Also KLH1-c was unreactive, whereas most, if not all, other functional units of KLH1 and KLH2 reacted positively to this lectin. On the other hand, peanut agglutinin specifically binds KLH2-c, indicating the presence of O-glycosidically linked carbohydrates in this functional unit. This contrasts to all other KLH functional units (including KLH1-c), which lack O-linked glycosides. The present results are discussed in view of the recent X-ray structure of the functional unit g from Octopus hemocyanin, and a published record of the Thomsen Friedenreich tumor antigenic epitope in KLH.  相似文献   

7.
Stereo electron microscopy of negatively stained images showed that myosin heads in acto-subfragment-1 (S1) covalently cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide were predominantly short and round when ATP was added, in contrast to their uniform tilted appearance in the rigor state. As an attempt to exclude molecules which were actually dissociated but still tethered to actin by artificial cross-links, quick-freeze deep-etch electron microscopy was coupled with the mica flake method to observe uncross-linked native acto-S1 in the presence of ATP. To maintain the low affinity S1 associated to actin in the presence of ATP, a high concentration of acto-S1 was applied to mica flakes whose absorption had been chemically modified. The image of acto-S1 with added ATP agreed well with the expected time-course of reversible dissociation and reassociation, confirming the applicability of this approach to examination of the structural changes of acto-S1. S1 molecules attached to F-actin under rigor conditions or in the presence of ADP were elongated, with the long axis tilted to F-actin. Actin-attached S1 became short and round upon addition of ATP or ADP-inorganic vanadate. Adenyl-5'-yl imidodiphosphate and inorganic pyrophosphate each partially dissociated S1 from actin, as expected.  相似文献   

8.
Molluscan hemocyanin: structure,evolution, and physiology   总被引:1,自引:0,他引:1  
Most molluscs have blue blood because their respiratory molecule is hemocyanin, a type-3 copper-binding protein that turns blue upon oxygen binding. Molluscan hemocyanins are huge cylindrical multimeric glycoproteins that are found freely dissolved in the hemolymph. With molecular masses ranging from 3.3 to 13.5 MDa, molluscan hemocyanins are among the largest known proteins. They form decamers or multi-decamers of 330- to 550-kDa subunits comprising more than seven paralogous functional units. Based on the organization of functional domains, they assemble to form decamers, di-decamers, and tri-decamers. Their structure has been investigated using a combination of single particle electron cryo-microsopy of the entire structure and high-resolution X-ray crystallography of the functional unit, although, the one exception is squid hemocyanin for which a crystal structure analysis of the entire molecule has been carried out. In this review, we explain the molecular characteristics of molluscan hemocyanin mainly from the structural viewpoint, in which the structure of the functional unit, architecture of the huge cylindrical multimer, relationship between the composition of the functional unit and entire tertiary structure, and possible functions of the carbohydrates are introduced. We also discuss the evolutionary implications and physiological significance of molluscan hemocyanin.  相似文献   

9.
This review summarizes recent highlights of our joint work on the structure, evolution, and function of a family of highly complex proteins, the hemocyanins. They are blue-pigmented oxygen carriers, occurring freely dissolved in the hemolymph of many arthropods and molluscs. They are copper type-3 proteins and bind one dioxygen molecule between two copper atoms in a side-on coordination. They possess between 6 and 160 oxygen-binding sites, and some of them display the highest molecular cooperativity observed in nature. The functional properties of hemocyanins can be convincingly described by either the Monod-Wyman-Changeux (MWC) model or its hierarchical extension, the Nested MWC model; the latter takes into account the structural hierarchies in the oligomeric architecture. Recently, we applied these models to interpret the influence of allosteric effectors in detailed terms. Effectors shift the allosteric equilibria but have no influence on the oxygen affinities characterizing the various conformational states. We have shown that hemocyanins from species living at different environmental temperatures have a cooperativity optimum at the typical temperature of their natural habitat. Besides being oxygen carriers, some hemocyanins function as a phenoloxidase (tyrosinase/catecholoxidase) which, however, requires activation. Chelicerates such as spiders and scorpions lack a specific phenoloxidase, and in these animals activated hemocyanin might catalyse melanin synthesis in vivo. We propose a similar activation mechanism for arthropod hemocyanins, molluscan hemocyanins and tyrosinases: amino acid(s) that sterically block the access of phenolic compounds to the active site have to be removed. The catalysis mechanism itself can now be explained on the basis of the recently published crystal structure of a tyrosinase. In a series of recent publications, we presented the complete gene and primary structure of various hemocyanins from different molluscan classes. From these data, we deduced that the molluscan hemocyanin molecule evolved ca. 740 million years ago, prior to the separation of the extant molluscan classes. Our recent advances in the 3D cryo-electron microscopy of hemocyanins also allow considerable insight into the oligomeric architecture of these proteins of high molecular mass. In the case of molluscan hemocyanin, the structure of the wall and collar of the basic decamers is now rapidly becoming known in greater detail. In the case of arthropod hemocyanin, a 10-? structure and molecular model of the Limulus 8 × 6mer shows the amino acids at the various interfaces between the eight hexamers, and reveals histidine-rich residue clusters that might be involved in transferring the conformational signals establishing cooperative oxygen binding.  相似文献   

10.
Hemocyanin transports oxygen in the hemolymph of many molluscs and arthropods and is therefore a central physiological factor in these animals. Molluscan hemocyanin molecules are oligomers composed of many protein subunits that in turn encompass subsets of distinct functional units. The structure and evolution of molluscan hemocyanin have been studied for decades, but it required the recent progress in DNA sequencing, X-ray crystallography and 3D electron microscopy to produce a detailed view of their structure and evolution. The basic quaternary structure is a cylindrical decamer 35 nm in diameter, consisting of wall and collar (typically at one end of the cylinder). Depending on the animal species, decamers, didecamers and multidecamers occur in the hemolymph. Whereas the wall architecture of the decamer seems to be invariant, four different types of collar have been identified in different molluscan taxa. Correspondingly, there exist four subunit types that differ in their collar functional units and range from 350 to 550 kDa. Thus, molluscan hemocyanin subunits are among the largest polypeptides in nature. In this report, recent 3D reconstructions are used to explain and visualize the different functional units, subunits and quaternary structures of molluscan hemocyanins. Moreover, on the basis of DNA analyses and structural considerations, their possible evolution is traced. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

11.
Disulfide bonds and calcium ions contribute significantly to the stability of the hemocyanin from the mollusc Rapana thomasiana grosse (gastropod). An extremely powerful protective effect of Ca2+ at a concentration of 100 mM (100% protection) against the destructive effect of reductants like dithiothreitol was observed. This is important for the practical application of molluscan hemocyanins in experimental biochemistry, immunology and medicine. The reduction of the disulfide bonds in the Rapana hemocyanin leads to a 20% decrease of the a-helical structure. The S-S bonds contribute significantly to the free energy of stabilization in water increasing delta G(D)H2O by 6.9 kJ mol (-1) The data are related to the X-ray model of the Rapana hemocyanin functional unit RtH2e. The results of this study can be of common validity for related respiratory proteins because the cysteine residues are conserved in all sequences of molluscan hemocyanins published so far.  相似文献   

12.
Higher order assemblies of molluscan hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the Fissurellidae, Naticidae and Melongenidae families of marine gastropods as well as some other molluscs including some members of the Opistobranchia and Bivalvia groups have hemocyanins which exist in solution as tri-decameric and mixed, multi-decameric aggregates characterized by sedimentation coefficients close to 100 S, 130 S, 150 S, 170 S and 200 S to 230 S. 2. The particle masses of the molluscan hemocyanins appear to be integral multiples close to 4.4 x 10(6) daltons. Thus, particle mass values of 4.47 x 10(6), 8.67 x 10(6) and 13.40 x 10(6) daltons were obtained for representative decameric, di-decameric, and tri-decameric components of Stenoplax conspicua, Fasciolaria tulipa and Euspira (Lunatia) heros hemocyanins. For Busycon contrarium, a gastropod with a mixed multidecameric hemocyanin, scanning transmission electron microscopic (STEM) measurements gave particle masses ranging from 8.89 x 10(6) and 13.20 x 10(6) for the di- and tri-decameric components to 38.87 x 10(6) and 43.40 x 10(6) daltons for highest nano- and deca-decameric aggregates. 3. The electron microscopic images of both uranyl acetate-stained and unstained specimens of hemocyanin aggregates indicate a non-random mode of assembly of the multi-decameric particles. This is most apparent from the electron micrographs of the moon snail hemocyanins. The tri-decameric and tetra-decameric particles seem to be assembled from a single di-decameric unit of the Mellema and Klug arrangement, with the collar ends facing outward, to which decameric units have been added from one or both ends, in a unidirectional tail-to-head to tail-to-collar manner. Consequently, all the aggregates including the higher, Melongenidae polymers have the appearance of closed cylinders terminating with the collar ends. 4. The radial distribution of the end-on views of the hemocyanin of the moon-snail Calinatioina oldroydii, show that the radial mass drops to zero at the center of the cylindrical particles consisting of one, two, or three decamers. This suggests that no caps are present at the ends of the hemocyanin particles which would inhibit or terminate their linear assembly. 5. The light-scattering behavior of B. contrarium and Marisa cornarietis hemocyanins examined as a function of increasing reagent concentration using the hydrophobic urea and Hofmeister salt series of reagents, show distinct aggregation and increase in molecular weights at low concentrations of reagent. Together with the stabilizing influence of Mg2+ and Ca2+ ions, this suggests polar and ionic stabilization of the inter-decameric contacts between the central di-decamers and the added decameric units of the higher aggregates of molluscan hemocyanins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The complete cDNA sequence and protein reading frame of a developmentally regulated hemocyanin subunit in the Dungeness crab (Cancer magister) is presented. The protein sequence is aligned with 18 potentially homologous hemocyanin-type proteins displaying apparent sequence similarities. Functional domains are identified, and a comparison of predicted hydrophilicities, surface probabilities, and regional backbone flexibilities provides evidence for a remarkable degree of structural conservation among the proteins surveyed. Parsimony analysis of the protein sequence alignment identifies four monophyletic groups on the arthropodan branch of the hemocyanin gene tree: crustacean hemocyanins, insect hexamerins, chelicerate hemocyanins, and arthropodan prophenoloxidases. They form a monophyletic group relative to molluscan hemocyanins and nonarthropodan tyrosinases. Arthropodan prophenoloxidases, although functionally similar to tyrosinases, appear to belong to the arthropodan hexamer- type hemolymph proteins as opposed to molluscan hemocyanins and tyrosinases.   相似文献   

14.
Hemocyanins are blue copper containing respiratory proteins residing in the hemolymph of many molluscs and arthropods. They can have different molecular masses and quaternary structures. Moreover, several molluscan hemocyanins are isolated with one, two or three isoforms occurring as decameric, didecameric, multidecameric or tubule aggregates. We could recently isolate three different hemocyanin isopolypeptides from the hemolymph of the garden snail Helix lucorum (HlH). These three structural subunits were named αD-HlH, αN-HlH and β-HlH. We have cloned and sequenced their cDNA which is the first result ever reported for three isoforms of a molluscan hemocyanin. Whereas the complete gene sequence of αD-HlH and β-HlH was obtained, including the 5′ and 3′ UTR, 180 bp of the 5′ end and around 900 bp at the 3′ end are missing for the third subunit. The subunits αD-HlH and β-HlH comprise a signal sequence of 19 amino acids plus a polypeptide of 3409 and 3414 amino acids, respectively. We could determine 3031 residues of the αN-HLH subunit. Sequence comparison with other molluscan hemocyanins shows that αD-HlH is more related to Aplysia californicum hemocyanin than to each of its own isopolypeptides. The structural subunits comprise 8 different functional units (FUs: a, b, c, d, e, f, g, h) and each functional unit possesses a highly conserved copper-A and copper-B site for reversible oxygen binding. Potential N-glycosylation sites are present in all three structural subunits. We confirmed that all three different isoforms are effectively produced and secreted in the hemolymph of H. lucorum by analyzing a tryptic digest of the purified native hemocyanin by MALDI-TOF and LC-FTICR mass spectrometry.  相似文献   

15.
Summary The chloroplasts ofEuglena gracilis have been examined by freeze-cleaving and deep-etching techniques.The two chloroplast envelope membranes exhibit distinct fracture faces which do not resemble any of the thylakoid fracture faces.Freeze-cleaved thylakoid membranes reveal four split inner faces. Two of these faces correspond to stacked membrane regions, and two to unstacked regions. Analysis of particle sizes on the exposed faces has revealed certain differences from other chloroplast systems, which are discussed. Thylakoid membranes inEuglena are shown to reveal a constant number of particles per unit area (based on the total particle number for both complementary faces) whether they are stacked or unstacked.Deep-etchedEuglena thylakoid membranes show two additional faces, which correspond to true inner and outer thylakoid surfaces. Both of these surfaces carry very uniform populations of particles. Those on the external surface (the A surface) are round and possess a diameter of approximately 9.5 nm. Those on the inner surface (the D surface) appear rectangular (as paired subunits) and measure approximately 10 nm in width and 18 nm in length. Distribution counts of particles show that the number of particles per unit area revealed by freeze-cleaving within the thylakoid membrane approximates closely the number of particles exposed on the external thylakoid surface (the A surface) by deep-etching. The possible significance of this correlation is discussed. The distribution of rectangular particles on the inner surface of the thylakoid sac (D surface) seems to be the same in both stacked and unstacked membrane regions. We have found no correlation between the D surface particles and any clearly defined population of particles on internal, freeze-cleaved membrane faces. These and other observations suggest that stacked and unstacked membranes are similar, if not identical in internal structure.  相似文献   

16.
Functional heterogeneity in O2 or CO binding of sites of dissociated molluscan hemocyanin polypeptide chains (Helix pomatia and Octopus vulgaris) has been estimated by an analysis of accurate noncooperative binding curves. Three types of experiments were performed: pure O2 or CO binding, competitive displacement of one ligand by the other, and simultaneous removal of both gases from protein partially saturated with O2 and CO. The data were analyzed in terms of a model which has two fractions of sites with different properties for O2 and CO. The relative proportion of the different binding sites and their affinity constant values were found by the combined use of the three different procedures. All species show a marked functional heterogeneity of sites for O2 binding, while for CO binding it has been observed only in the case of H. pomatia beta-hemocyanin. Moreover, in all three molluscan hemocyanins examined, the two classes of O2-binding sites, although present in different proportions within the polypeptide chains, display similar affinity constant values. The data reported show a good consistency with results obtained using digested and isolated domains, providing confidence in the analytical procedure used. From comparison of the O2/CO affinity ratios (KO2, KCO) of each class it may be suggested that the difference in O2 affinity of two kinds of binding sites is related to a different local structure of the active sites. The results, moreover, unequivocally confirm that binding and displacement of two gaseous ligands to hemocyanin occur by a simple competitive mechanism, although the binding site is structurally complex and the two ligands are bound with different geometries.  相似文献   

17.
The ultrastructure of anionic sites in the lamina rara externa (LRE) of rat glomerular basement membrane (GBM) was studied in three dimensions by a quick-freezing and deep-etching method using polyethyleneimine (PEI) as a cationic tracer. Results were compared with those obtained with conventional ultrathin sections examined by transmission electron microscopy. Examination with the quick-freezing and deep-etching method was done without (group 1) or with (group 2) contrasting/fixation with a phosphotungstic acid and glutaraldehyde mixture and post-fixation with osmium tetroxide, which were necessary for visualization of PEI particles by conventional ultrathin sections. Using the quick-freezing and deep-etching method without following contrasting/fixation and post-fixation (group 1), many PEI particles were observed to decorate around fibrils, which radiated perpendicularly from the lamina densa to connect with the podocyte cell membrane. The arrangement of PEI particles was not as regular as that previously reported using conventional ultrathin sections. In contrast, the tissue that was studied with quick-freezing and deep-etching followed by contrasting/fixation and post-fixation (group 2) showed a shrunken appearance. The arrangement of PEI particles was regular (about 20 particles/1000 nm of LRE) as that previously observed using conventional ultrathin sections. However, the number of PEI particles on the LRE was markedly decreased and interruption of decorated fibrils was prominent, as compared with group 1. Ultrastructural examination using conventional ultrathin sections with contrasting/fixation and post-fixation (group 3) demonstrated PEI particles on the LRE in reasonable amounts (18-21 particles/1000 nm of LRE) with fairly regular interspacing (45-65 nm) as reported previously.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary With the conventional freeze-fracture technique applied to biological specimens, cell membranes split along an interior plane and two membrane faces are produced. True membrane surfaces remain hidden and can only be uncovered by deep-etching. To date, deep-etching could not be satisfactorily performed in the presence of cryoprotective agents since conventional cryoprotectants do not sublime due to their low vapour pressure. This lack of suitable volatile cryoprotectants has limited deep-etching so far to very small objects which can be cryofixed without cryoprotectants. As a consequence, our freeze-fracture knowledge of cell surfaces is still poor.The present study shows that ethanol is a suitable volatile cryoprotectant for the freeze-fracture technique, and provides a novel approach to the routine deep-etching of freeze-fracture specimens without the need for special equipment. With ethanol deep-etching, true outer cell-surfaces are demonstrated within the kidneys of rat and Psammomys.  相似文献   

19.
1. The hemocyanins of the Naticidae family, E. heros, N. duplicata, P. draconis, P. lewisii and C. oldroydii were investigated by sedimentation velocity and scanning transmission electron microscopy. 2. At pH 8.0, 0.05 M Mg2+ E. heros hemocyanin is found to be predominantly in the tri-decameric state with a sedimentation coefficient (So20,w) of 131.3 (+/- 0.6) S. While the hemocyanin of N. duplicata is also mainly in the 130 S form, the hemocyanin of C. oldroydii is largely in the di-decameric form with a sedimentation coefficient close to 100 S. Other Naticidae hemocyanins, those of P. lewisii and P. draconis, have mixtures of the 100 S and 130 S di- and tri-decamers, and minor amounts of 150 S and faster sedimenting components. 3. The average particle masses based on STEM measurements are 8.85 x 10(6), 1303 x 10(6), and 17.1 x 10(6) da for the di-, tri-, and tetra-decameric assemblies of hemocyanin. 4. The subunit mol. wts of C. oldroydii hemocyanin and the published values for E. heros hemocyanin at alkaline pHs and in the presence of 8.0 M urea range from 4.2 x 10(5) to 4.8 x 10(5), suggesting the same decameric organization of the sub-assemblies of the Naticidae hemocyanins as for other molluscan hemocyanins. 5. The appearance of the larger hemocyanin particles in the electron micrographs support the hypothesis for their assembly that was based on similar studies of the hemocyanins of the Melongenidae family. According to this scheme the formation of higher aggregates is accomplished by the tail-to-head addition of each decameric unit to a central di-decamer which itself has the tail-to-tail Mellema and Klug arrangement of decamers. In this model all the higher aggregates terminate from either end with the same "collar" ends.  相似文献   

20.
Electrospray ionization-mass spectrometry of ion-exchange and reverse-phase purified hemocyanin from Limulus polyphemus revealed six predominant isoforms with molecular weights ranging from 71,730 to 72,695 Da. The heaviest of these agreed closely with the molecular weight calculated for the previously determined Edman sequence with substitution of isoleucine for valine at position 9 and inclusion of three internal disulfide bonds and one copper atom. Proposed structures for the other isoforms were made on the basis of the molecular weight measurements. Reverse-phase chromatography can be used in addition to the traditional ion-exchange step to produce hemocyanin preparations of greater purity that might be valuable for further detailed investigations of the physicochemical properties of these important proteins. The results reflect yet again the value of mass spectrometry for recognizing molecular microheterogeneity in biological macromolecules and for following protein purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号