首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.  相似文献   

2.
Odour-related behaviours in aquatic invertebrates are important and effective anti-predator behaviours. Parasites often alter invertebrate host behaviours to increase transmission to hosts. This study investigated the responses of the amphipod Hyalella azteca when presented with two predator chemical cues: (i) alarm pheromones produced by conspecifics and (ii) kairomones produced by a predatory Green Sunfish (Lepomis cyanellus). We compared the responses of amphipods uninfected and infected with the acanthocepalan parasite Leptorhynchiodes thecatus. Uninfected amphipods reduced activity and increased refuge use after detecting both the alarm pheromones and predator kairomones. Infected amphipods spent significantly more time being active and less time on the refuge than uninfected amphipods, and behaved as if they had not detected the chemical stimulus. Therefore, L. thecatus infections disrupt the amphipods’ anti-predator behaviours and likely make their hosts more susceptible to predation.  相似文献   

3.
According to the 'parasitic manipulation hypothesis', phenotypic changes induced by parasites in their intermediate hosts are effective means of increasing trophic transmission to final hosts. One obvious prediction, although seldom tested, is that increased vulnerability of infected prey to an appropriate predator should be achieved by the parasite altering the anti-predator behaviour of its intermediate host. In this study, we tested this prediction using the fish acanthocephalan Pomphorhynchus tereticollis and the freshwater amphipod Gammarus pulex. Firstly, we estimated the relative vulnerability of infected and uninfected gammarids to predation by the bullhead Cottus gobio in the field. Second, we investigated under experimental conditions how two common anti-predator behaviours of aquatic invertebrates, refuge use and short-distance reaction to predator chemical cues, were affected by infection status. We found that the prevalence of infection in the field was 10 times higher among gammarids collected from the stomach contents of bullheads compared with free-ranging individuals collected in the same river. In a microcosm uninfected gammarids, but not infected ones, increased the use of refuge in the presence of a bullhead. Finally, a behavioural experiment using an Y-maze olfactometer showed opposite reactions to predator odour. Whereas uninfected gammarids were significantly repulsed by the chemical cues originating from bullheads, infected ones were significantly attracted to the odour of the predator. Taken together, our results suggest that the alteration of anti-predator behaviour in infected G. pulex might enhance predation by bullheads in the field. Reversing anti-predator behaviour might thus be an efficient device by which parasites with complex life-cycles increase their trophic transmission to final hosts. Further studies should pay more attention to both the increased vulnerability of infected prey to an appropriate predator in the field and the influence of parasitic infection on the anti-predator behaviour of intermediate hosts.  相似文献   

4.
Larvae of many trophically-transmitted parasites alter the behaviour of their intermediate host in ways that increase their probability of transmission to the next host in their life cycle. Before reaching a stage that is infective to the next host, parasite larvae may develop through several larval stages in the intermediate host that are not infective to the definitive host. Early predation at these stages results in parasite death, and it has recently been shown that non-infective larvae of some helminths decrease such risk by enhancing the anti-predator defences of the host, including decreased activity and increased sheltering. However, these behavioural changes may divert infected hosts from an optimal balance between survival and foraging (either seeking food or a mate). In this study, this hypothesis was tested using the intermediate host of the acanthocephalan parasite Pomphorhynchus laevis, the freshwater amphipod Gammarus pulex. We compared activity, refuge use, food foraging and food intake of hosts experimentally infected with the non-infective stage (acanthella), with that of uninfected gammarids. Behavioural assays were conducted in four situations varying in predation risk and in food accessibility. Acanthella-infected amphipods showed an increase in refuge use and a general reduction in activity and food intake. There was no effect of parasite intensity on these traits. Uninfected individuals showed plastic responses to water-borne cues from fish by adjusting refuge use, activity and food intake. They also foraged more when the food was placed outside the refuge. At the intra-individual level, refuge use and food intake were positively correlated in infected gammarids only. Overall, our findings suggest that uninfected gammarids exhibit risk-sensitive behaviour including increased food intake under predation risk, whereas gammarids infected with the non-infective larvae of P. laevis exhibit a lower motivation to feed, irrespective of predation risk and food accessibility.  相似文献   

5.
Many studies have shown that photic behavior of amphipods is subject to parasitic manipulation. However, all these investigations have focused on but one property of light (i.e., intensity). This study investigated the possibility that variable wavelength sensitivity, as a potentially important component of amphipod ecology, is subject to parasitic manipulation. The photic behavior of freshwater amphipods Hyalella azteca, infected with the duck acanthocephalan Corynosoma constrictum, was tested. The phototactic responses of infected and uninfected amphipods to various wavelengths in the visible spectrum were compared, and to delineate the effects of intensity and wavelength on behavior, the preferences of amphipods for environments characterized by various combinations of light intensity and wavelength were determined. Response to blue light (400-450 nm) was little affected by infection. Amphipod response to higher red region wavelengths (600-700 nm) was altered by infection. Infected amphipods were significantly less responsive to green region light (500-550 nm), which could lead to increased wandering throughout the water column, thereby facilitating increased parasite transmission through increased predation risk. This study reinforces the subtlety with which parasites can alter their host's behavior, presumably resulting in an increased probability of being transmitted from the intermediate host to a definitive host.  相似文献   

6.
Phenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.  相似文献   

7.
Several gammarid species serve as intermediate hosts for the acanthocephalan parasite Polymorphus minutus. This parasite influences gammarid behaviour in order to favour transmission to its ultimate host, generally a bird. We investigated this host manipulation in Gammarus roeseli, a gammarid species introduced in France 150 years ago which now coexists with several exotic species from different origins. In the field, vertical distribution of G. roeseli revealed a higher proportion of infected individuals close to the water's surface and the size distribution of infected gammarids revealed predation pressure on infected individuals. However, under laboratory conditions both infected and non-infected individuals remained benthic. The addition of a second gammarid, Dikerogammarus villosus, to the experimental device involved a vertical displacement of infected G. roeseli towards the water's surface. Dikerogammarus villosus, originating from the Ponto-Caspian basin, can be considered as an aggressive predator. The substitution of D. villosus with Atyaephyra desmarestii, a planktivore decapod, did not alter the gammarids' distribution, with both infected and uninfected G. roeseli staying benthic. Thus, biotic interactions between D. villosus and G. roeseli represent selective pressure encouraging the expression of manipulated behaviour in infected amphipods. Through manipulation, P. minutus was found to increase the survival of infected G. roeseli when faced with non-host predators and to make it more vulnerable to predation by the parasite's definitive host.  相似文献   

8.
There are many recorded cases of parasites that are capable of altering the behaviour of their host to enhance their transmission efficiency. However, not all of these cases are necessarily the results of the parasites actively manipulating host behaviour; they may rather be the 'by-products' of pathology caused by the parasite's presence. This study investigates the effect of the microphallid trematode Maritrema novaezealandensis on the behaviour of one of its crustacean intermediate hosts, the amphipod Paracalliope novizealandiae. Uninfected amphipods were experimentally infected by exposure to M. novaezealandensis cercariae. The activity level and vertical position of experimentally infected amphipods were compared with uninfected amphipods at 2 weeks and 6 weeks post-infection, i.e. both before and after the parasite achieved infectivity to its definitive host. Infected amphipods were found to exhibit significantly lower levels of activity and to occur significantly lower in the water column than uninfected controls during both periods. Based on the timing of the change in behaviour exhibited by infected amphipods, the results suggest that the altered behaviour exhibited by P. novizealandiae infected with M. novaezealandensis is most likely due to pathology caused by the parasite rather than a case of active, and adaptive, behavioural manipulation.  相似文献   

9.
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.  相似文献   

10.
Medoc V  Beisel JN 《Parasitology》2008,135(8):977-984
Among the potential effects of parasitism on host condition, the 'increased host abilities' hypothesis is a counterintuitive pattern which might be predicted in complex-life-cycle parasites. In the case of trophic transmission, a parasite increasing its intermediate host's performance facing non-host predators improves its probability of transmission to an adequate, definitive host. In the present study, we investigated the cost of infection with the acanthocephalan Polymorphus minutus on the locomotor/escape performance of its intermediate host, the crustacean Gammarus roeseli. This parasite alters the behaviour of its intermediate host making it more vulnerable to predation by avian definitive hosts. We assessed the swimming speeds of gammarids using a stressful treatment and their escape abilities under predation pressure. Despite the encystment of P. minutus in the abdomen of its intermediate host, infected amphipods had significantly higher swimming speeds than uninfected ones (increases of up to 35%). Furthermore, when interacting with the non-host crustacean predator Dikerogammarus villosus, the highest escape speeds and greatest distances covered by invertebrates were observed for parasitized animals. The altered behaviour observed among the manipulated invertebrates supported the 'increased host abilities' hypothesis, which has until now remained untested experimentally. The tactic of increasing the ability of infected intermediate hosts to evade potential predation attempts by non-host species is discussed.  相似文献   

11.
Some parasites have been shown to manipulate host behavior so that parasite transmission to the next host is enhanced. Infection with Triaenophorus crassus Forel (Cestoda) caused alterations in the activity and microhabitat selection of the first intermediate host Cyclops strenuus Fischer (Copepoda) in the laboratory. Infected copepods made more starts to swim but spent less time swimming than uninfected copepods. These changes were independent of the intensity of infection. In a water column illuminated from above, infected copepods approached the surface, whereas uninfected ones remained close to the bottom. In the dark both infected and uninfected copepods stayed near the bottom. Finally, infection with T. crassus increased the probability of C. strenuus being eaten by the second intermediate host, whitefish (Coregonus lavaretus L. s.l.), in the laboratory. In experimental infections, 10-day-old procercoids had significantly lower infectivity for whitefish than older (12-, 14-, and 21-day-old) procercoids. Behavioral changes were detected in infected copepods containing procercoids 12 days old or older but not in experiments with 10-day-old procercoids. These results may indicate that T. crassus changes the behavior of the copepod host only after it has become infective to the next host, which is consistent with the active manipulation hypothesis.  相似文献   

12.
We examined the response of benthic invertebrates to hypoxia and predation risk in bioassay and behavioral experiments. In the bioassay, four invertebrate species differed widely in their tolerance of hypoxia. The mayfly, Callibaetis montanus, and the beetle larva, Hydaticus modestus, exhibited a low tolerance of hypoxia, the amphipod, Gammarus lacustris, was intermediate in its response and the caddisfly, Hesperophylax occidentalis, showed high tolerance of hypoxia. In the behavioral experiments, we observed the response of these benthic invertebrates, which differ in locomotor abilities, to vertical oxygen and temperature gradients similar to those in an ice-covered pond. With adequate oxygen, invertebrates typically remained on the bottom substrate. As benthic oxygen declined in the absence of fish, all taxa moved above the benthic refuge to areas with higher oxygen concentrations. In the presence of fish mayflies increased activity whereas all other taxa decreased activity in response to hypoxia. Mayflies and amphipods remained in the benthic refuge longer and endured lower oxygen concentrations whereas the vertical distribution of caddisflies and beetle larvae was not influenced by the presence of fish. As benthic oxygen declined in the presence of fish, all but the beetle larva reduced activity over all oxygen concentrations compared to when fish were absent. As benthic oxygen continued to decline, mayflies and amphipods moved above the benthic refuge and were preyed upon by fish. Thus, highly mobile taxa unable to tolerate hypoxia (mayflies and amphipods) responded behaviorally to declining oxygen concentrations by migrating upward in the water column. Taxa that were less mobile (beetle larvae) or hypoxia-tolerant (caddisflies) showed less of a response. Taxa most vulnerable to fish predation (mayflies and amphipods) showed a stronger behavioral response to predator presence than those less vulnerable (caddisflies and beetle larvae). Because invertebrates differ in their ability to withstand hypoxia, episodes of winter hypoxia could have long-lasting effects on benthic invertebrate communities either by direct mortality or selective predation on less tolerant taxa.  相似文献   

13.
Parasites with a complex life cycle are supposed to influence the behaviour of their intermediate host in such a way that the transmission to the final host is enhanced, but reduced to non-hosts. Here, we examined whether the trophically transmitted bird parasite Polymorphus minutus increases the antipredator response of its intermediate host, the freshwater amphipod Gammarus pulex to fish cues, i.e. non-host cues (‘increased host abilities hypothesis’). Aggregation behaviour and reduced activity are assumed to decrease the predation risk of gammarids by fishes. Uninfected G. pulex are known to aggregate in the presence of a fish predator. In the present study, gammarids were allowed to choose either to join a group of conspecifics or to stay solitary (experiment 1) or between two groups differing in infection status (experiment 2), both in the presence or absence of fish odour. The perception of the groups was limited to mainly olfactory cues. Contrary to the ‘increased host abilities hypothesis’, in infected gammarids of experiment 1, fish cues induced similar aggregation behaviour as in their uninfected conspecifics. In experiment 2, uninfected as well as infected gammarids did not significantly discriminate between infected and uninfected groups. Although only uninfected gammarids reduced their activity in the presence of predator cues, infected G. pulex were generally less active than uninfected conspecifics. This might suggest that P. minutus manipulates rather the general anti-predator behaviour than the plastic response to predation risk.  相似文献   

14.
Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the WAP, community-level non-consumptive effects occur when amphipods chemically sense fish predators and respond by seeking refuge in chemically-defended macroalgae. Such interactions may be important in releasing amphipods from predation pressure and facilitating their unusually high abundances along the WAP. Moreover, recent studies on the sensory biology of the Antarctic keystone sea star Odontaster validus indicate that chemotactile-mediated interactions between conspecifics and other sympatric predatory sea stars may have significant ramifications in structuring community dynamics. Finally, from a global environmental perspective, understanding how chemical ecology structures marine benthic communities along the WAP must increasingly be viewed in the context of the dramatic impacts of rapid climatic change now occurring in this biogeographic region.  相似文献   

15.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite.  相似文献   

16.
Studer A  Lamare MD  Poulin R 《Parasitology》2012,139(4):537-546
The transmission of parasites takes place under exposure to a range of fluctuating environmental factors, one being the changing levels of solar ultraviolet radiation (UVR). Here, we investigated the effects of ecologically relevant levels of UVR on the transmission of the intertidal trematode Maritrema novaezealandensis from its first intermediate snail host (Zeacumantus subcarinatus) to its second intermediate amphipod host (Paracalliope novizealandiae). We assessed the output of parasite transmission stages (cercariae) from infected snail hosts, the survival and infectivity of cercariae, the susceptibility of amphipod hosts to infection (laboratory experiments) and the survival of infected and uninfected amphipod hosts (outdoor experiment) when exposed to photo-synthetically active radiation only (PAR, 400-700 nm; no UV), PAR+UVA (320-700 nm) or PAR+UVA+UVB (280-700 nm). Survival of cercariae and susceptibility of amphipods to infection were the only two steps significantly affected by UVR. Survival of cercariae decreased strongly in a dose-dependent manner, while susceptibility of amphipods increased after exposure to UVR for a prolonged period. Exposure to UVR thus negatively affects both the parasite and its amphipod host, and should therefore be considered an influential component in parasite transmission and host-parasite interactions in intertidal ecosystems.  相似文献   

17.
David E. Wooster 《Oecologia》1998,115(1-2):253-259
Recent theoretical work suggests that predator impact on local prey density will be the result of interactions between prey emigration responses to predators and predator consumption of prey. Whether prey increase or decrease their movement rates in response to predators will greatly influence the impact that predators have on prey density. In stream systems the type of predator, benthic versus water-column, is expected to influence whether prey increase or decrease their movement rates. Experiments were conducted to examine the response of amphipods (Gammarus minus) to benthic and water-column predators and to examine the interplay between amphipod response to predators and predator consumption of prey in determining prey density. Amphipods did not respond to nor were they consumed by the benthic predator. Thus, this predator had no impact on amphipod density. In contrast, amphipods did respond to two species of water-column predators (the predatory fish bluegills, Lepomis macrochirus, and striped shiners, Luxilus chrysocephalus) by decreasing their activity rates. This response led to similar positive effects on amphipod density at night by both species of predatory fish. However, striped shiners did not consume many amphipods, suggesting their impact on the whole amphipod “population” was zero. In contrast, bluegills consumed a significant number of amphipods, and thus had a negative impact on the amphipod “population”. These results lend support to theoretical work which suggests that prey behavioral responses to predators can mask the true impact that predators have on prey populations when experiments are conducted at small scales. Received: 21 March 1997 / Accepted: 15 December 1997  相似文献   

18.
Parasitism is an important process in ecosystems, but has been largely neglected in ecosystem research. However, parasites are involved in most trophic links in food webs with, in turn, a major role in community structure and ecosystem processes. Several studies have shown that higher nutrient availability in ecosystems tends to increase the prevalence of parasites. Yet, most of these studies focused on resource availability, whereas studies investigating resource quality remain scarce. In this study, we tested the impact of the quality of host food resources on infection by parasites, as well as on the consequences for the host. Three resources were used to individually feed Gammarus pulex (Crustacea: Amphipoda) experimentally infected or not infected with the acanthocephalan species Pomphorhynchus laevis: microbially conditioned leaf litter without phosphorus input (standard resource); microbially conditioned leaf litter enriched in phosphorus; and microbially conditioned leaf litter without phosphorus input but complemented with additional inputs of benthic diatoms rich in both phosphorus and eicosapentaenoic acid. During the 110 day experiment, infection rate, parasite load, host survival, and parasite-mediated behavioral traits implicated in trophic transmission were measured (refuge use, geotaxis and locomotor activity). The resources of higher quality, regardless of the infection status, reduced gammarid mortality and increased gammarid growth. In addition, higher quality resources increased the proportion of infected gammarids, and led to more cases of multi-infections. While slightly modifying the geotaxis behavior of uninfected gammarids, resource quality did not modulate the impact of parasites on host behavior. Finally, for most parameters, consumption of algal resources had a greater impact than did phosphorus-enriched leaf litter. Therefore, manipulation of resource quality significantly affected host–parasite relationships, which stressed the need for future research to investigate in natura the relationships between resource availability, resource quality and parasite prevalence.  相似文献   

19.
Rudolf VH  Armstrong J 《Oecologia》2008,157(4):675-686
Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the dynamics of communities.  相似文献   

20.
Acanthocephalan parasites can manipulate the behavior of their amphipod intermediate hosts in ways that increase the amphipod's risk of being eaten by a predator that serves as the final host for the parasite. Some asocial amphipod species have been shown to increase the likelihood of aggregation in response to chemical cues associated with predators. If such aggregation has anti-predation benefits, it might be subject to manipulation by parasites. We tested this hypothesis by comparing the preference of parasitized and unparasitized amphipods (Gammarus pseudolimnaeus) for associating with a group of unparasitized conspecifics, both in the presence and absence of chemical cues from predatory brook sticklebacks (Culaea inconstans). Amphipods with encysted parasites (Corynosoma sp.) avoided aggregating, whereas unparasitized amphipods preferred to aggregate. We also found that the risk of predation by sticklebacks faced by an individual amphipod was significantly lower when the amphipod was in a group compared to when it was alone. This suggests that the aggregation response of unparasitized amphipods is an adaptive response to escape predation. This study provides evidence for a novel parasitic manipulation of intermediate host behavior that is likely to increase transmission to the definitive host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号