首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PC12 cells contain at least three immunologically distinct phospholipase C (PLC) isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of PC12 cells with nerve growth factor (NGF) leads to an increase in the phosphorylation of PLC-gamma, but not of PLC-beta or PLC-delta. This increase can be seen in as little as 1 minute. The increased phosphorylation occurs on both serine and tyrosine residues, with the major increase being in the former. This result suggests the possibility that the NGF-dependent increase in phosphoinositide hydrolysis in PC12 cells is due to selective phosphorylation of PLC-gamma by serine and tyrosine protein kinases associated with the NGF receptor.  相似文献   

2.
Ligand stimulation of the platelet-derived growth factor receptor (PDGF-R) results in rapid activation of the receptor tyrosine kinase, stimulation of phosphoinositide hydrolysis, an increase in intracellular free Ca2+ concentration ([Ca2+]i), and, ultimately, cellular proliferation. In a previous study, we demonstrated that staurosporine, a known inhibitor of protein kinase C, blocked PDGF-induced [Ca2+]i increases in Swiss mouse 3T3 fibroblasts by a mechanism that appeared unrelated to inhibition of protein kinase activity (Olsen, R., Melder, D., Seewald, M., Abraham, R., and Powis, G. (1990) Biochem. Pharmacol. 39, 968-972). In the present study, we report that staurosporine inhibits ligand-dependent PDGF-R tyrosine kinase activation in cell-free receptor preparations and in intact Swiss 3T3 cells. At the same concentrations (10(-8)-10(-6) M), staurosporine suppressed both the tyrosine phosphorylation of phospholipase C activity and the hydrolysis of phosphoinositides induced by PDGF stimulation of intact cells. In contrast, guanine nucleotide-binding protein-dependent phospholipase C activation induced by bradykinin or fluoroaluminate anion was relatively insensitive to staurosporine. A preferential inhibitory effect of staurosporine on signal generation by the PDGF-R was indicated by findings that epidermal growth factor receptor (EGF-R) tyrosine kinase activity and EGF-dependent phospholipase C in A-431 carcinoma cells were approximately 100-fold less sensitive to this drug. These data indicate that submicromolar concentrations of staurosporine inhibit PDGF-dependent phosphoinositide hydrolysis and Ca2+ mobilization through a proximal inhibitory effect on ligand-induced activation of the PDGF-R tyrosine kinase.  相似文献   

3.
Expression of rat TrkA in Xenopus spinal neurons confers responsiveness of these neurons to nerve growth factor (NGF) in assays of neuronal survival and growth cone chemotropism. Mutational analysis indicates that coactivation of phospholipase C-gamma (PLC-gamma) and phosphoinositide 3-kinase (PI3-kinase) by specific cytoplasmic domains of TrkA is essential for triggering chemoattraction of the growth cone in an NGF gradient. Uniform exposure of TrkA-expressing neurons to NGF resulted in a cross-desensitization of turning responses induced by a gradient of netrin-1, brain-derived neurotrophic factor (BDNF), or myelin-associated glycoprotein (MAG) but not by a gradient of collapsin-1/semaphorin III/D or neurotrophin-3 (NT-3). These results, together with the effects of pharmacological inhibitors, support the notion that there are common cytosolic signaling pathways for two separate groups of guidance cues, one of which requires coactivation of PLC-gamma and PI3-kinase pathways.  相似文献   

4.
We investigated the mechanism(s) whereby activation of a growth-factor receptor typically endowed with tyrosine kinase activity, such as the platelet-derived growth factor (PDGF) receptor, triggers phosphoinositide hydrolysis. In Swiss 3T3 cells permeabilized with streptolysin O, an analogue of GTP, guanosine 5'-[gamma-thio]triphosphate, was found to potentiate the coupling of the bombesin receptor to phospholipase C. In contrast, the activation of the enzyme by PDGF occurred in a GTP-independent manner. Moreover, the inactive analogue of GTP, guanosine 5'-[beta-thio]diphosphate, significantly inhibited the bombesin-induced InsP3 generation, whereas it did not decrease the same effect when stimulated by PDGF.  相似文献   

5.
Basic fibroblast growth factor (FGF) and alpha-thrombin can stimulate DNA synthesis in Chinese hamster fibroblasts (CCL39) by two separate signaling pathways (Chambard, J.C., Paris, S., L'Allemain, G., and Pouysségur, J. (1987) Nature 326, 800-803) but can also act synergistically. We have examined whether this synergism might depend upon changes in inositol lipid metabolism. Indeed, FGF, which has no effect on its own on phosphoinositide hydrolysis, potentiates (by up to 2-fold) thrombin-induced formation of inositol phosphates. This enhancing effect is also observed upon direct activation by AIF4- of the GTP-binding protein coupled to phospholipase C, and is best revealed when phospholipase C is weakly stimulated. With low thrombin concentrations or with AIF4-, the formation of inositol phosphates is immediately increased with a marked reduction of the initial lag, whereas at high thrombin concentrations, the stimulation by FGF becomes pronounced only after desensitization of phospholipase C to thrombin. FGF-induced potentiation is not mimicked by calcium ionophores, but is likewise elicited by epidermal growth factor, platelet-derived growth factor, and to a lesser extent by insulin, other growth factors known to activate receptor tyrosine kinases. We therefore propose that the tyrosine kinase-activating growth factors enhance the coupling between GTP-binding protein and phospholipase C, presumably through the phosphorylation of one of these two proteins. Treatment of cells with pertussis toxin attenuates thrombin-induced phospholipase C activity but does not impede the potentiation by FGF. Comparison of the potentiating effects of FGF on inositol phosphate formation and on DNA synthesis suggests than an increased production of second messengers by the inositol lipid pathway in the first hours of stimulation might be, at least in part, responsible for the synergistic actions of FGF and thrombin on DNA synthesis.  相似文献   

6.
The effect of epidermal growth factor on the levels of cytosolic phospholipase A2 mRNA and protein in cultured rat endometrial stromal cells isolated from uteri sensitized for the decidual cell reaction was examined. Treatment with epidermal growth factor increased the steady-state cytosolic phospholipase A2 mRNA and protein levels as demonstrated by Northern and Western blot analyses, respectively. Immunocytochemical analysis demonstrated an increase of cytosolic phospholipase A2 protein in most cells, as opposed to a small subpopulation of cells in culture. These results show that epidermal growth factor causes an increase in steady-state cytosolic phospholipase A2 mRNA and protein levels in rat endometrial stromal cells from uteri sensitized for the decidual cell reaction. Epidermal growth factor receptor ligands may regulate cytosolic phospholipase A2 and thus prostaglandin production in the endometrial stromal cells during implantation.  相似文献   

7.
The possible involvement of a stimulatory guanosine triphosphate (GTP)-binding (G) protein in epidermal growth factor (EGF)-induced phosphoinositide hydrolysis has been investigated in permeabilized NIH-3T3 cells expressing the human EGF receptor. The mitogenic phospholipid lysophosphatidate (LPA), a potent inducer of phosphoinositide hydrolysis, was used as a control stimulus. In intact cells, pertussis toxin partially inhibits the LPA-induced formation of inositol phosphates, but has no effect on the response to EGF. In cells permeabilized with streptolysin-O, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) dramatically increases the initial rate of inositol phosphate formation induced by LPA. In contrast, activation of phospholipase C (PLC) by EGF occurs in a GTP-independent manner. Guanine 5'-O-(2-thiodiphosphate) (GDP beta S) which keeps G proteins in their inactive state, blocks the stimulation by LPA and GTP gamma S, but fails to affect the EGF-induced response. Tyrosine-containing substrate peptides, when added to permeabilized cells, inhibit EGF-induced phosphoinositide hydrolysis without interfering with the response to LPA and GTP gamma S. These data suggest that the EGF receptor does not utilize an intermediary G protein to activate PLC and that receptor-mediated activation of effector systems can be inhibited by exogenous substrate peptides.  相似文献   

8.
Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.  相似文献   

9.
We examined the effect of basic fibroblast growth factor (bFGF) on the activation of phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells. bFGF stimulated both the formations of choline (EC50 was 30 ng/ml) and inositol phosphates (EC50 was 10 ng/ml). Calphostin C, an inhibitor of protein kinase C (PKC), had little effect on the bFGF-induced formation of choline. bFGF stimulated the formation of choline also in PKC down regulated cells. Genistein and methyl 2,5-dihydroxycinnamate, inhibitors of protein tyrosine kinases, significantly suppressed the bFGF-induced formation of choline. Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, enhanced the bFGF-induced formation of choline. In vitro kinase assay for FGF receptors revealed that FGF receptor 1 and 2 were autophosphorylated after FGF stimulation. bFGF dose-dependently stimulated DNA synthesis of these cells. These results strongly suggest that bFGF activates phosphatidylcholine-hydrolyzing phospholipase D through the activation of tyrosine kinase, but independently of PKC activated by phosphoinositide hydrolysis in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

10.
We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation.  相似文献   

11.
Treatment of HER 14 cells with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) induced a translocation of phospholipase C-γ (PLC-γ) from cytosol to membrane. In such growth factor-treated cells, cytosolic PLC-γ was found to contain more phosphotyrosine than membrane-associated enzyme. Because these growth factors have been shown to promote both the physical association of PLC-γ with their receptors and the subsequent phosphorylation of the enzyme directly by the membrane-bound receptor tyrosine kinases, the membrane assocation of PLC-γ may simply be due to the formation of transient enzyme (receptor)-substrate (PLC-γ) complexes. If this is the case, membrane-associated PLC-γ would be expected to be released from membrane after undergoing tyrosine phosphorylation. However, tyrosine phosphorylation of membrane-associated PLC-γ by the EGF receptor in vitro did not result in the release of PLC-γ from membrane. Thus, the association of PLC-γ with membrane would appear to involve more than enzyme-substrate complex.  相似文献   

12.
In a previous study we showed that basic fibroblast growth factor (bFGF) stimulates activation of protein kinase C through phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether bFGF stimulates the induction of heat shock protein (HSP) 27, a low-molecular-weight HSP, and HSP70, a high-molecular-weight HSP, in MC3T3-E1 cells and the mechanism behind the induction. bFGF increased the level of HSP27 while having little effect on HSP70 level. bFGF stimulated the accumulation of HSP27 dose-dependently in the range between 1 and 30 ng/ml. bFGF induced an increase in the level of the mRNA for HSP27. The bFGF-stimulated accumulation of HSP27 was reduced by inhibitors of protein kinase C. The bFGF-induced HSP27 accumulation was reduced in protein kinase C-downregulated MC3T3-E1 cells. U-73122, an inhibitor of phospholipase C, and propranolol, a phosphatidic acid phosphohydrolase inhibitor, suppressed the bFGF-stimulated HSP27 accumulation. These results strongly suggest that bFGF stimulates HSP27 induction through protein kinase C activation in osteoblasts.  相似文献   

13.
Ascites tumour cells have previously been shown by us to require exogenous cholesterol for growth. To investigate further this phenomenon, we have used, in addition to free cholesterol, cholesterol complexed to digitonine, to elaborate the specificity of this growth-controlling process using a chemically defined medium. Our data show that only free cholesterol stimulates cell growth and macromolecule synthesis in a dose-dependent manner, suggesting that the proper embedding of the sterol into the membrane is a prerequisite for its function. Furthermore, studies have been performed on the influence of cholesterol on the phosphoinositide metabolism of our cells, as phosphoinositides furnish important second messenger molecules in the cascade of signal transduction. We could show that cholesterol stimulates a transient release of inositol trisphosphate and other inositol phosphates by inducing the activation of phospholipase C (PLC). PLC activation by a factor of about 3 with phosphatidylinositol 4-phosphate and phosphatidyl inositol 4,5-bisphosphate as substrates could be measured directly by using a partially purified membrane preparation. This enzyme activity was found to be strongly dependent on free Ca2+ ions with optimal concentrations of 100 nM for cholesterol- and 50 nM for cholesterol-digitonide-treated cells. Ca2+ concentration for half-maximum activation, however, was identical under both conditions. Phospholipase C activity could be synergistically increased about 2-fold with 25 microg GTP gammaS in cholesterol-digitonide-treated cells as well, suggesting that the coupling between phospholipase C and the G-protein was not disturbed by the complex. These data demonstrate a functional role of cholesterol on cell growth, macromolecule synthesis, and phosphoinositide metabolism mediating the release of important second messenger molecules.  相似文献   

14.
The effect of mitogens on phospholipase D activity was investigated in NIH-3T3 fibroblasts by measuring the accumulation of phosphatidylpropanol, produced by phospholipase D phosphatidyl transferase activity when 1-propanol acts as the phosphatidyl group acceptor. Platelet-derived growth factor (PDGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated phosphatidylpropanol production by the cells. The dose-response relationships for activation of phospholipase D and stimulation of thymidine incorporation by PDGF and TPA were comparable. The possibility that activation of phospholipase D is utilized by mitogens as a trans-membrane pathway for signalling cell growth is discussed.  相似文献   

15.
Previously, we found that suppressing phosphatidylcholine-specific phospholipase C could induce neuronal differentiation of rat mesenchymal stem cells in the absence of serum and fibroblast growth factor. It is well known that basic fibroblast growth factor plays an important role in mesenchymal stem cell neuronal differentiation. In this study, our purpose was to understand the cooperation of phosphatidylcholine-specific phospholipase C and basic fibroblast growth factor in controlling mesenchymal stem cell neuronal differentiation. Our results showed that suppressing phosphatidylcholine-specific phospholipase C in the presence of basic fibroblast growth factor could induce cell neuronal differentiation and the viability of the differentiated cells was obviously increased. Furthermore, we found that the resting membrane potential of the differentiated cells gradually decreased, but the mitochondrial membrane potential rose with increasing treatment time and these characteristics were similar to cultured neurons from mouse embryo forebrains. To determine the possible mechanism by which this combination controls cell neuronal differentiation, we measured changes in the mitochondrial membrane potential and in the levels of reactive oxygen species. The results showed that both the mitochondrial membrane potential and reactive oxygen species levels decreased when basic fibroblast growth factor was added. The data suggested that lower phosphatidylcholine-specific phospholipase C activity was required for mesenchymal stem cell neuronal differentiation and basic fibroblast growth factor was necessary for maintaining the neuronal differentiation state. Moreover, basic fibroblast growth factor could contribute to rescuing the differentiated cells from death through decreasing overly high mitochondrial membrane potentials and reactive oxygen species levels.  相似文献   

16.
Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFβR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFβR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe. Both PTEN oxidation and Akt phosphorylation did not occur in response to PDGF in the kinase-deficient mutant and in the PDGFβR mutant with a mutation in the PI3K binding site (Tyr740 and Tyr751). Thus, the kinase activity and the constituent Tyr740 and Tyr751 residues of PDGFβR in the cells stimulated with PDGF are responsible for the oxidation of PTEN and the Akt phosphorylation.  相似文献   

17.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

18.
Currently, a central question in biology is how signals from the cell surface modulate intracellular processes. In recent years phosphoinositides have been shown to play a key role in signal transduction. Two phosphoinositide pathways have been characterized, to date. In the canonical phosphoinositide turnover pathway, activation of phosphatidylinositol-specific phospholipase C results in the hydrolysis of phosphatidylinositol 4,5-bisphospate and the generation of two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. The 3-phosphoinositide pathway involves protein-tyrosine kinase-mediated recruitment and activation of phosphatidylinositol 3-kinase, resulting in the production of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. The 3-phosphoinositides are not substrates of any known phospholipase C, are not components of the canonical phosphoinositide turnover pathway, and may themselves act as intracellular mediators. The 3-phosphoinositide pathway has been implicated in growth factor-dependent mitogenesis, membrane ruffling and glucose uptake. Furthermore the homology of the yeast vps34 with the mammalian phosphatidylinositol 3-kinase has suggested a role for this pathway in vesicular trafficking. In this review the different mechanisms employed by protein-tyrosine kinases to activate phosphatidylinositol 3-kinase, and its involvement in the signaling cascade initiated by tyrosine phosphorylation, are examined.  相似文献   

19.
Epidermal growth factor (EGF) enhances vasopressin- and ionophore-A23187-induced prostaglandin production and arachidonate release by rat glomerular mesangial cells in culture. The purpose of the present study was to delineate the phospholipid pathways involved in this effect. In cells labelled with [14C]arachidonate, EGF significantly enhanced the free arachidonate released in response to A23187 or vasopressin without enhancing the production of [14C]arachidonate-labelled diacylglycerol. EGF increased the [14C]arachidonate-labelled phosphatidic acid formed in response to vasopressin, but to a much smaller extent than it increased free arachidonate release. These results indicate that activation of phospholipase C is not sufficient to explain the increase in free arachidonate release observed on addition of EGF. To examine if EGF enhanced phospholipase A2 activity, mesangial cells were labelled with [2-2H]glycerol and [14C]-arachidonate, and the formation of arachidonate-poor lysophospholipids was studied. When combined with vasopressin, EGF significantly enhanced the formation of arachidonate-poor lysophospholipids as compared with vasopressin alone. The fate of exogenously added lysophosphatidylcholine was not altered after stimulation with vasopressin plus EGF, indicating that decreased deacylation or reacylation of the lysophospholipids was not responsible for their accumulation. Taken together, these results indicate that EGF enhances free arachidonate release by activation of phospholipase A2. The signalling mechanism responsible for the change in phospholipase A2 activity is not known, but could conceivably involve phosphorylation of modulating proteins such as lipocortin or G-proteins.  相似文献   

20.
Ligand-activated epidermal growth factor (EGF) receptors are coupled to the phosphatidylinositol (PtdIns) pathway to stimulate formation of two second messengers, inositol trisphosphate and diacylglycerol. Investigation of the interaction between EGF receptors and phosphoinositide kinases identified PtdIns and PtdIns(4)P kinase activities in extensively washed EGF receptor immunoprecipitates. Studies using COOH-terminal truncation mutant EGF receptors and immunoisolation by an EGF receptor peptide anti-serum in the presence of peptide (residues 644-666) indicated that the phosphoinositide kinases were associated with the region located between the inner membrane boundary and the kinase domain of the EGF receptor. In vivo cross-linking identified four tyrosine phosphorylated proteins of approximately 135, 62, 55, and 47 kDa associated with the EGF receptor. After EGF stimulation, PtdIns and PtdIns(4)P kinase activities were markedly increased among proteins isolated by monoclonal antiphosphotyrosine antibodies. The activities associated with the EGF receptor and with tyrosine-phosphorylated proteins were identified as PtdIns4-and PtdIns(4)P 5-kinase. Tyrosine dephosphorylation did not alter the activity of the prominent PtdIns(4)P 5-kinase activity. These results indicate that the phosphoinositide kinases are associated with and tyrosine phosphorylated by the EGF receptor as part of the mechanism coordinating responses between signal transduction pathways but do not demonstrate that tyrosine phosphorylation of PtdIns(4)P 5-kinase is sufficient to activate the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号