首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The induction of cellular acquired thermal tolerance (ATT) during heat acclimation (HA) in humans is not well described. This study determined whether exercise-HA modifies the human heat shock protein (HSP)72 and HSP90 responses and whether changes are correlated with physiological adaptations to HA. Using a 10-day HA protocol comprising daily exercise (treadmill walking) in a hot environment (T(a) = 49 degrees C, 20% RH), we analyzed baseline and ex vivo heat-induced expression of HSP72 and HSP90 in peripheral blood mononuclear cells (PBMCs) isolated prior to exercise from eight subjects on day 1 and 10 of the HA protocol. Classical physiological responses to HA were observed, including significantly reduced heart rate and core body temperature, and significantly increased sweating rate. Baseline levels of HSP72 and HSP90 were significantly increased following acclimation by 17.7 +/- 6.1% and 21.1 +/- 6.5%, respectively. Ex vivo induction of HSP72 in PBMCs exposed to heat shock (43 degrees C) was blunted on day 10 compared with day 1. A correlation was identified (r(2) = 0.89) between changes in core temperature elevation and ex vivo HSP90 responses to heat shock between days 1 and 10, indicating that volunteers demonstrating the greatest physiological HA tended to exhibit the greatest blunting of ex vivo HSP induction in response to heat shock. In summary, 1) exercise-HA resulted in increased baseline levels of HSP72 and HSP90, 2) ex vivo heat inducibility of HSP72 was blunted after HA, and 3) volunteers demonstrating the greatest physiological HA tended to exhibit the greatest blunting of ex vivo HSP induction in response to heat shock. These data demonstrate that physiological adaptations in humans undergoing HA are accompanied by both increases in baseline levels and changes in regulation of cytoprotective HSPs.  相似文献   

3.
Female CD-1 mice were injected with an LD50 dose of Streptococcus pneumoniae and then exposed to 2.45 GHz (CW) microwave radiation at an incident power density of 10 mW/cm2 (SAR = 6.8 W/kg), 4 h/d for 5 d at ambient temperatures of 19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C. Four groups of 25 animals were exposed at each temperature with an equal number of animals concurrently sham-exposed. Survival was observed for a 10-d period after infection. Survival of the sham-exposed animals increased as ambient temperature increased from 19 °C–34 °C. At ambient temperatures at or above 37 °C the heat induced in the body exceeded the thermoregulatory capacity of the animals and deaths from hyperthermia occurred. Survival of the microwave-exposed animals was significantly greater than the shams (~20%) at each ambient temperature below 34 °C. Based on an analysis of the data it appears that the hyperthermia induced by microwave exposure may be more effective in increasing survival in infected mice than hyperthermia produced by conventional methods (ie, high ambient temperature). Microwave radiation may be beneficial to infected animals at low and moderate ambient temperatures, but it is detrimental when combined with high ambient temperatures.  相似文献   

4.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   

5.
Exposure to a high ambient temperature (HT) can cause heat stress, which has a huge negative impact on physiological functions. Cellular heat-shock response is activated upon exposure to HT for cellular maintenance and adaptation. In addition, antioxidants are used to support physiological functions under HT in a variety of organisms. Flavangenol, an extract of pine bark, is one of the most potent antioxidants with its complex mixture of polyphenols. In the current study, chronic (a single daily oral administration for 14 days) or acute (a single oral administration) oral administration of flavangenol was performed on chicks. Then the chicks were exposed to an acute HT (40±1 °C for 3 h) to examine the effect of flavangenol on the mRNA expression of heat-shock protein (HSP) in the brain and liver. Rectal temperature, plasma aspartate aminotransferase (AAT), a marker of liver damage, and plasma corticosterone as well as metabolites were also determined. HSP-70 and -90 mRNA expression, rectal temperature, plasma AAT and corticosterone were increased by HT. Interestingly, the chronic, but not the acute, administration of flavangenol caused a declining in the diencephalic mRNA expression of HSP-70 and -90 and plasma AAT in HT-exposed chicks. Moreover, the hepatic mRNA expression of HSP-90 was also significantly decreased by chronic oral administration of flavangenol in HT chicks. These results indicate that chronic, but not acute, oral administration of flavangenol attenuates HSP mRNA expression in the central and peripheral tissues due to its possible role in improving cellular protective functions during heat stress. The flavangenol-dependent decline in plasma AAT further suggests that liver damage induced by heat stress was minimized by flavangenol.  相似文献   

6.
ObjectiveThe aim of the present study was to investigate the effects of repeated thermal conditioning (RTC) at an early age on physiological and behavioral responses in chicks.MethodsBirds were assigned to one of the four treatments in which the RTC was exposure to 40 °C for 15 min daily. The treatments were 1) no thermal conditioning (control); 2) early exposure group (EE; RTC from 2 to 4 days of age); 3) later exposure group (LE; RTC from 5 to 7 days of age); or 4) both early and later exposure (BE; RTC from 2 to 7 days of age). All groups of chicks were challenged with high ambient temperature (40 °C for 15 min) at two weeks of age.ResultsDuring heat challenge, initiation times of dissipation behaviors (panting and wing-drooping) were measured. Rectal temperature and respiration rate were measured after and before heat challenge. Hypothalamic samples and blood were collected at the end of heat challenges. Initiation times of dissipation behaviors and rectal temperature were not affected by the treatments. Increases in respiration rate in response to heat challenge were suppressed by early RTC treatment. There was no clear pattern of glucose levels in relation to thermal conditioning, whereas plasma corticosterone levels were decreased by early treatment (EE and BE groups). Hypothalamic thyrotropin releasing hormone gene expression was suppressed by early and later thermal conditioning and suppressed further by both early and later exposure. Neuropeptide Y gene expression in the BE group was lower than in the other groups, with a similar trend for corticotropin releasing hormone expression.ConclusionOur results suggest that the effect of repeated thermal conditioning on the central thermoregulatory system depends on the number of times that chicks experienced conditioning. In addition, repeated thermal conditioning has greater effects on the acquisition of thermotolerance when conditioning occurs in chicks of two to four days of age in comparison with chicks of five to seven days of age.  相似文献   

7.
Heat shock proteins (HSPs) are highly conserved proteins whose syntheses are induced by a variety of stresses, including heat stress. Since the expression of HSPs, including HSP70, protects cells from heat-induced apoptosis, HSP expression has been considered to be a complicating factor in hyperthermia. On the other hand, recent reports have shown the importance of HSPs, such as HSP70, HSP90 and glucose-regulated protein 96 (gp96), in immune reactions. If HSP expression induced by hyperthermia is involved in tumor immunity, novel cancer immunotherapy based on this novel concept can be developed. In such a strategy, a tumor-specific hyperthermia system, which can heat the local tumor region to the intended temperature without damaging normal tissue, would be highly advantageous. To achieve tumor-specific hyperthermia, we have developed an intracellular hyperthermia system using magnetite nanoparticles. This novel hyperthermia system can induce necrotic cell death via HSP expression, which induces antitumor immunity. In the present article, cancer immunology and immunotherapy based on hyperthermia, and HSP expression are reviewed and discussed. This article forms part of the Symposium in Writing "Thermal stress-related modulation of tumor cell physiology and immune responses", edited by Elfriede Noessner.  相似文献   

8.
The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at −21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48 h cultured PBMC were subjected to assorted levels of exposures viz. 37 °C, 42 °C to impose heat stress and 42 °C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (P<0.05) higher in Karan Fries than the Sahiwal cows. Both the breeds showed maximum expression of HSP on the day of parturition, more so in KF than Sahiwal. There was a significant (P<0.05) difference in the HSP mRNA expression at different levels of exposure. Zinc treatment to heat stressed PBMC caused a significant (P<0.05) down regulation of HSP. For immune status, anti-inflammatory cytokine, IL-10 in the culture supernatant was accessed. The IL-10 was significantly (P<0.05) higher in Karan Fries (168.18±14.09 pg/ml) than the Sahiwal cows (147.24±11.82 pg/ml). The IL-10 concentration was highest on the day of calving. Zinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock.  相似文献   

9.
The purpose of this study was to determine local sweat rate (LSR) and sweat composition during heat acclimation (HA). For ten consecutive days of HA, eight participants cycled in 33 °C and 65% relative humidity at an intensity such that a rectal temperature of 38.5 °C was reached within ~40 min, followed by a 60-min clamp of this rectal temperature (i.e., controlled hyperthermia). Four participants extended HA by a 28-day decay period and five consecutive days of heat re-acclimation (HRA) using controlled hyperthermia. Sweat from the upper arm and upper back was collected three times during each heat exposure session. LSR and sweat sodium, chloride, lactate, and potassium concentrations were determined. Relative to HA day 1, LSR was increased at the final day of HA (day 10) (arm: +58%, P < 0.001; back: +36%, P < 0.05). Concentrations of sodium, chloride, and lactate significantly (P < 0.05) decreased to ~60% at HA day 10 compared to day 1 on the arm and back. Potassium concentration did not significantly differ on HA day 10 compared to day 1 (arm: +11%, P > 0.05; back: +8%, P > 0.05). The induction patterns of the sudomotor adaptations were different. Whilst LSR increased from HA day 8 on the arm and from HA day 7 on the back, sodium and chloride conservation already occurred from HA day 3 on both skin sites. Lastly, the sweat lactate reduction occurred from HA day 6 on the arm and back. Initial evidence is provided that adaptations were partly conserved after decay (28 days) and that a 5-day HRA may be sufficient to restore HA adaptations. In conclusion, ten days of exercise-induced HA using controlled hyperthermia led to increases in LSR and concomitant reductions of sweat sodium, chloride, and lactate concentrations, whilst potassium concentrations remained relatively constant.  相似文献   

10.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   

11.
Exposure to elevated temperatures has a strong effect on cell functions, and is used in clinical practice. Hyperthermia may affect multiple regulatory mechanisms in cells. To understand better the response to hyperthermia of immortalized primary human breast epithelial cells, we performed a proteomics study of these cells cultured at 34°C or 39°C. Twenty-four proteins were shown to be differentially expressed due to hyperthermia. Analysis of these proteins showed the potential involvement of various biological processes in response to hyperthermia, e.g., cell adhesion, cell communication, and cell cycle. Transforming growth factor-β2 (TGF-β2) and heat shock protein 27 (HSP27) were found to be upregulated at 39°C. TGF-β2 was found to affect expression of HSP27, and to have a protective role in hyperthermia-induced cell death. Thus, the dataset described here of hyperthermia-related proteins in human primary breast epithelial cells predicts a number of cellular activities affected by exposure to high temperatures and provides a set of proteins for further studies.  相似文献   

12.
Many B and T lymphocytes display a significant heterogeneity with respect to the subcellular distribution of the cytoskeletal protein spectrin and protein kinase C (PKC), both of which often can be found in a large cytoplasmic aggregate in these cell types. In addition to spectrin and PKC, we recently have reported that HSP70 is also a component of this lymphocyte aggregate. Moreover, these three proteins can undergo dynamic and reversible changes in their localization causing “assembly” of the aggregate in response to various conditions associated with lymphocyte activation, indicating that this naturally occurring aggregate structure is sensitive to activation status. We show here that the same changes in HSP70/spectrin/PKC localization induced by PKC activation also can be caused, in vitro and in vivo, by a mild hyperthermia exposure, as occurs during a natural fever (39.5–40°C, 2–12 hr). This mild heat exposure also triggers the activation of PKC, a major heat shock response, and lymphocyte proliferation. The increase in PKC activity, HSP70-spectrin-PKC aggregate formation, and heat shock protein expression resulting from exposure to fever-like hyperthermia are all inhibited by calphostin C, a specific inhibitor of PKC. These data demonstrate that changes observed during lymphocyte activation could be induced by a mild hyperthermia exposure occurring during a normal febrile episode. J. Cell. Physiol. 172:44–54, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Exposure to sublethal heat stress activates a complex cascade of signaling events, such as activators (NO), signal molecules (PKCε), and mediators (HSP70 and COX-2), leading to implementation of heat preconditioning, an adaptive mechanism which makes the organism more tolerant to additional stress. We investigated the time frame in which these chemical signals are triggered after heat stress (41?±?0.5°С/45 min), single or repeated (24 or 72 h after the first one) in heart tissue of male Wistar rats. The animals were allowed to recover 24, 48 or 72 h at room temperature. Single heat stress caused a significant increase of the concentration of HSP70, NO, and PKC level and decrease of COX-2 level 24 h after the heat stress, which in the next course of recovery gradually normalized. The second heat stress, 24 h after the first one, caused a significant reduction of the HSP70 levels, concentration of NO and PKC?, and significant increase of COX-2 concentration. The second exposure, 72 h after the first heat stress, caused more expressive changes of HSP70 and NO in the 24 h-recovery groups. The level of PKC? was not significantly changed, but there was significantly increased COX-2 concentration during recovery. Serum activity of AST, ALT, and CK was reduced after single exposure and increased after repeated exposure to heat stress, in both time intervals. In conclusion, a longer period of recovery (72 h) between two consecutive sessions of heat stress is necessary to achieve more expressive changes in mediators (HSP70) and triggers (NO) of heat preconditioning.  相似文献   

14.
15.
 An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35–49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally ) 15 min before or 2 h after heat exposure (at 35°C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (P<0.05) in birds with access to drinking water during heat exposure. All birds injected with indomethacin exhibited an increase in rectal temperature, irrespective of whether indomethacin was administered before or in the course of the rise in temperature. The results revealed that the increase in rectal temperature during heat exposure is not prostaglandin-dependent, and that the use of cyclooxigenase inhibitors is not recommended to attenuate heat stress hyperthermia in broiler chickens. Received: 15 December 1997 / Revised: 29 June 1998 / Accepted: 31 July 1998  相似文献   

16.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

17.
The purpose of the study was to investigate the effects of mild hyperthermia on cell viability, release of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, malondialdehyde (MDA) formation, total antioxidant capacity (T-AOC), and the relative mRNA levels of heat shock protein (HSP60, 70, and 90) in hepatic cells of grass carp (Ctenopharyngodon idellus) before and after temperature stress. Cultured cells were exposed to thermal stress (32 °C) for 0.5, 1, 2, 4, and 8 h. The results showed that hyperthermia stress significantly reduced cell viability (P<0.01) and increased LDH release at 0.5 and 1 h (P<0.05). Additionally, hyperthermia stress led to oxidative stress as evidenced by significantly decreased T-AOC after treating cells for 0.5 and 8 h (P<0.05). SOD activity also significantly decreased after 1 h of stress (P<0.05), but MDA formation increased after 8 h of stress (P<0.05). This may be partly responsible for the lower cell viability and higher LDH release we observed. The differences between SOD activity, MDA formation, and T-AOC between the 2 h treatment group and the control were smaller than that of other groups. This indicated that cellular antioxidant enzyme systems play an important role in the defense against oxidative stress. Further tests showed that the expression of HSP60 at 1, 2, and 4 h (P<0.05), HSP70 at 0.5 and 1 h (P<0.01), and HSP90 at all time points after stress were higher (P<0.01) than pre-stress levels. This suggested that HSPs possess the ability to modulate cellular anti-stress responses and play key roles in protecting organisms from heat stress. In conclusion, hyperthermia inhibits cell proliferation, induces cell oxidative stress, and enhances HSP expression in hepatic cells of grass carp.  相似文献   

18.
HSP70 expression in the CNS in response to exercise and heat stress in rats   总被引:7,自引:0,他引:7  
We havepreviously documented the regional distribution of 70-kDa heat shockprotein (HSP70) in brains of rats made hyperthermic by brief exposureto high-powered microwaves (HPM; 2.06 GHz). We now compare HSP70expression induced by HPM exposure to that induced by exertionaland/or environmental heat stress. Rats were chronicallyimplanted with a temperature probe guide in the hypothalamic region ofthe brain (Tbr). After recovery,the following treatment groups were examined: HPM; sham exposed;treadmill exercise at room temperature (24°C; Ex-1); treadmillexercise in a warm environment (34°C; Ex-2); and sedentary groups(Sed-1 and Sed-2), in which ambient temperature was adjusted so thatthe Tbr mimicked the Tbr in the corresponding exercisegroups. Significant HSP70 expression occurred only in the hyperthermic(Ex-2, Sed-2, and HPM) groups. The pattern of HSP70 expression wassimilar among Ex-2 and Sed-2 rats but differed from that in HPM rats.We conclude that 1) the pattern ofHSP70 expression differs between HPM and nonmicrowave heating, and2) exercise alone was not sufficientto induce central HSP70 expression.

  相似文献   

19.
20.
Thermal stress has been shown to result in decreased egg production, decreased eggshell quality, and ultimately millions of dollars in losses to the industry. Therefore, there are many factors to consider when implementing genetic selection programs aimed at improving egg production under tropical conditions. So, trial is trying to improve the productivity and eggshell quality traits of the Fayoumi chicken under high ambient temperatures via selection programs and gene expression. In the present study, day-old Fayoumi chicks were raised either under normal temperature (control) or conditions of thermal stress (the heated group). At 35 weeks, male and female chickens from the control group were mated randomly and females selected for higher egg production and eggshell strength were mated to male siblings to obtain the progeny of the first generation (F1). F1 birds were further selected and mated to obtain the progeny of the second generation. Our results show that egg production and eggshell strength traits improved over successive generations via selection under conditions of heat stress. Furthermore, the reduction in egg production and eggshell strength as a result of heat stress declined from one generation to the next in birds selected for good heat tolerance, and an inverse relationship was observed between the OC-17 and eggshell strength. Additionally, levels of HSP90 and gene expression increased in the two successive generations, indicating that both productivity and heat tolerance were enhanced due to selection in birds raised under conditions of thermal stress. Moreover, generation exerted an important effect on this trait. Thus, desirable traits such as improved heat tolerance in producing lines were observed in Fayoumi chickens exposed to conditions of thermal stress via selection. Therefore, modern advances in studies of poultry breeding and genetics, such as gene expression studies, should be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号