首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stearidonic acid (STA; 18:4n-3) and γ-linolenic acid (GLA; 18:3n-6) are significant intermediates in the biosynthetic pathway for the very-long-chain polyunsaturated fatty acids of eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6), respectively. To develop a sustainable system for the production of dietary polyunsaturated fatty acids, we focused on the action of the enzyme delta 6-desaturase (D6DES) on the essential acids, linoleic acid (LA; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3). A 1,335-bp full-length cDNA encoding D6DES (McD6DES) was cloned from Muraenesox cinereus using degenerate PCR and RACE-PCR methods. To investigate the enzymatic activity of McD6DES in the production of n-6 and n-3 fatty acids, a recombinant plasmid expressing McD6DES (pYES-McD6DES) was transformed into and expressed in Saccharomyces cerevisiae. The exogenously expressed McD6DES produced GLA and STA at conversion rates of 14.2% and 45.9%, respectively, from the exogenous LA and ALA substrates. These results indicate that McD6DES is essentially a delta 6-desaturase involved in very-long-chain polyunsaturated fatty acid synthesis.  相似文献   

2.
Gamma-linolenic acid (GLA, 18:3 n6) is an essential polyunsaturated fatty acid of the omega-6 family and is found to be effective in prevention and/or treatment of various health problems. In this study, we evaluated the possibility of increasing γ-linolenic acid contents in mammalian cells using the delta-6 gene from Borago officinalis. The borage Δ6-desaturase gene (sDelta-6) was codon-optimized and introduced into HEK293 cells by lipofectin transfection. Co-expression of GFP with sDelta-6 and RT-PCR analysis indicated that sDelta-6 could be expressed in mammalian cells. Subsequently, the heterologous expression of borage Δ6-desaturase was evaluated by fatty acid analysis. Total cellular lipid analysis of transformed cells fed with linoleic acid (LA 18:2 n6) as a substrate showed that the expression of sDelta-6 resulted in an 228–483% (p < 0.05) increase of GLA when compared with that in the control cells. The highest conversion efficiency of LA into GLA in sDelta-6+ cells was 6.9 times higher than that in the control group (11.59% vs. 1.69%; p < 0.05). Our present work demonstrated that the sDelta-6 gene from borage could be functionally expressed in mammalian cells, and could convert LA into GLA. Furthermore, this study may pave the way to generate transgenic livestock that can synthesise GLA.  相似文献   

3.
4.
Genetic manipulation of the oil-yielding crop plants for better oil quality through biotechnological methods is an important aspect of crop improvement. Due to the inherent absence of the Δ6-desaturase (d6D) function, Brassica juncea, an oil-yielding crop plant, is unable to synthesize γ-linolenic acid (GLA), a nutritionally important fatty acid although the crop plant synthesizes the precursor fatty acids required for GLA production. Cyanobacterial d6D introduces carbon–carbon double bond onto linoleic acid (C18:2) and α-linolenic acid (C18:3) by desaturation processes for production of GLA and octadecatetraenoic acid (OTA) respectively. In the present investigation, d6D coding sequence from Synechocystis sp. PCC6803 was cloned by polymerase chain reaction and introduced into B. juncea through Agrobacterium-mediated transformation technique. Both cytosolic as well as seed-specific expression of d6D were attempted. The transformed plants show production of GLA and OTA in contrast to their absence in the untransformed control plants adducing evidence for introgression and functional expression of the cyanobacterial d6D gene in B. juncea.  相似文献   

5.
Sakuradani E  Kobayashi M  Shimizu S 《Gene》1999,238(2):445-453
A DNA fragment was cloned from the fungal strain, Mortierella alpina 1S-4 (which is used industrially to produce arachidonic acid), after PCR amplification with oligonucleotide primers designed based on the sequence information for delta6-desaturase genes (from borage and Caenorhabditis elegans), which are involved in the desaturation of linoleic acid (delta9, delta12-18:2) to gamma-linolenic acid (delta6, delta9, delta12-18:3). This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 457 amino acids from a M. calpina 1S-4 library. The predicted amino-acid sequence showed similarity to those of the above delta6-desaturases, and contained a cytochrome b5-like domain at the N-terminus, being different from the yeast delta9-desaturase which has the corresponding domain at the C-terminus. The full-length cDNA clone was expressed under the control of the amyB promoter in a filamentous fungus, Aspergillus oryzae, resulting in the accumulation of gamma-linolenic acid (which was not detected in the control Aspergillus) to the level of 25.2% of the total fatty acids. These findings revealed that the recombinant product has delta6-desaturase activity. The Mortierella delta6-desaturase is the first to be reported in fungi.  相似文献   

6.
Development in the strain and the fermentation process of Hansenula polymorpha was implemented for the production of gamma-linolenic acid (GLA, C18:3 delta 6,9,12), which is an n-6 polyunsaturated fatty acid (PUFA) and has been reported to possess a number of health benefits. The mutated delta 6-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without utilization of methanol a high cell-density culture of the yeast recombinant carrying the delta 6-desaturase gene was achieved by fed-batch fermentation using glycerol-limited conditions. The delta 6-desaturated products, octadecadienoic acid (C18:2 delta6,9), GLA and stearidonic acid (C18:4 delta6,9,12,15), accumulated at high levels under the derepression condition. The GLA production was also optimized by adjusting specific growth rates. The results show that the specific growth rate affected both lipid content and fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates studied, the highest GLA concentration, which was at of 697 mg/l, was obtained in the culture with the specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor delta 6-desaturase gene was similar to that of blackcurrant oil with both containing similar proportions of n-3 and n-6 essential fatty acids.  相似文献   

7.
Polyunsaturated fatty acids (PUFAs), namely, oleic (C18:1), linoleic (C18:2), and gamma-linolenic acid (C18:3), constituted the majority in the total fatty acid content (44%) of sporangiospores of Mucor rouxii. At 30 degrees C, the germination begins within 1h at which time spore swelling occurs, followed by germ tube emergence within 3-4h. Throughout germination, an increase in gamma-linolenic acid (GLA) was observed and its content was highest at germ tube emergence. It took longer for sporangiospores of M. rouxii to germinate at sub-optimal temperatures (15 and 35 degrees C). However, the content of GLA was higher at the germ tube initiation than at the mycelial stage at all temperatures, suggesting the association of GLA and germination of sporangiospores. This finding was substantially confirmed by differential expression of delta9-, delta12-, and delta6-desaturase genes measured during spore germination. The expression of three desaturase genes parallels the pattern of GLA synthesis. By using RT-PCR techniques to follow gene expression, we found that mRNA of delta12- and delta6-desaturase genes were translated as soon as the spores were introduced into a fresh medium while the mRNA of delta9-desaturase gene could not be detected until 2h after introduction. A sharp increase in mRNA of delta6-desaturase genes correlated well with an increase in GLA content at germ tube emergence (4h). These results demonstrated that changes in fatty acid composition of sporangiospore of M. rouxii and differential expression of desaturase genes occurred during germination, and that extensive changes in GLA synthesis associated with some events in germination process.  相似文献   

8.
9.
gamma-Linolenic acid (GLA), a nutritionally important fatty acid in mammals, is synthesized by a delta6 desaturase. Here, we report identification of PiD6, a new cDNA from the oleaginous fungus, Pythium irregulare, encoding a 459-amino acid protein that shares sequence similarity to carboxyl-directed desaturases from various species. Expression of PiD6 in yeast (Saccharomyces cerevisiae) revealed that it converts exogenously supplied linoleic acid into GLA, indicating that it encodes a delta6 fatty acid desaturase. Expression of the desaturase in Brassica juncea under the control of the Brassica napus napin promoter resulted in production of three delta6 unsaturated fatty acids (18:2-6, 9; 18:3-6, 9, 12; and 18:4-6, 9, 12, 15) in seeds. Among them, GLA (18:3-6, 9, 12) is the most abundant and accounts for up to 40% of the total seed fatty acids. Lipid class and positional analysis indicated that GLA is almost exclusively incorporated into triacylglycerol (98.5%) with only trace amounts found in the other lipids. Within triacylglycerols, GLA is more abundant at the sn-2 position.  相似文献   

10.
11.
γ—亚麻酸(GLA)是人体和动物饮食中具有营养作用的重要的多烯不饱和脂肪酸,在大多数油料作物种子中不含有GLA,而只含有其前体物亚油酸,只有少数油料植物种子中含有GLA,如夜来香(Oenothera spp),琉璃苣(Borago officinalis)等。△^6—脂肪酸脱氢酶可将亚油酸转化为γ—亚麻酸,为了能够在传统的油料作物种子中产生GLA,我们将从深黄被孢霉中克隆的△^6—脂肪酸脱氢酶基因,与植物表达载体pGA643连接,构建了重组质粒pGAM—ICL6,将其通过农杆菌介导法,导入模式植物烟草中。经PCR和Southern杂交分析表明该基因已导入并整合到烟草的基因组中,Northern杂交结果表明该基因在转基因烟草的mRNA水平上获得表达。对转基因植株进行脂肪酸分析,结果显示,GLA和十八碳四烯酸(OTA)分别占总脂肪酸含量的19.7%和3.5%。  相似文献   

12.
A new full-length cDNA (PsD6) putatively encoding a ?6-desaturase was cloned from the eicosapentaenoic acid-producing fungus Pythium splendens RBB-5. PsD6 contained an open reading frame of 1380 bp encoding a protein of 459 amino acids. The deduced amino acid sequence showed high similarity to those of other ?6-desaturases. A recombinant vector expressing PsD6 (pPIC3.5K-D6) was constructed and transformed into Pichia pastoris GS115. The heterologous expressed PsD6 in P. pastoris desaturated linoleic acid to γ-linolenic acid but not desaturated α-linolenic acid to stearidonic acid. The results indicated that PsD6 was a fatty acid ?6-desaturase and it had a substrate specificity for linoleic acid.  相似文献   

13.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

14.
When the gene desD encoding Spirulina Δ6-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b 5 domain from Mucor rouxii, the results showed the production of GLA (γ-linolenic acid), the product of the reaction catalyzed by Δ6-desaturase. The results revealed that in E. coli cells, where cytochrome b 5 is absent and ferredoxin, a natural electron donor of Δ6-desaturase, is present at a very low level, the cytochrome b 5 domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Δ6-desaturase in E. coli. In comparison to the co-expression of cytochrome b 5 with the Δ6-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Δ6-desaturase co-expressed with cytochrome b 5 and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH2 (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.  相似文献   

15.
The improvement of nutritional quality is one potential application for the genetic modification of plants. One possible target for such manipulation is the modification of fatty acid metabolism. In this work, expression of a borage Δ6-desaturase cDNA in tomato (Lycopersicon esculentum L.) has been shown to produce γ-linolenic acid (GLA; 18:3 Δ6,9,12) and octadecatetraenoic acid (OTA; 18:4 Δ6,9,12,15) in transgenic leaf and fruit tissue. This genetic modification has also, unexpectedly, resulted in a reduction in the percentage of linoleic acid (LA 18:2 Δ9,12) and a concomitant increase in the percentage of α-linolenic acid (ALA; 18:3 Δ9,12,15) in fruit tissue. These changes in fatty acid composition are thought to be beneficial for human health.  相似文献   

16.
We have recently demonstrated that in rats the process of delta 6-desaturation of linoleic and alpha-linolenic acids slows with aging. One method of counteracting the effect of slowed desaturation of linoleic acid would be to provide the 6-desaturated metabolite, gamma-linolenic acid (18:3(n-6) GLA) directly. We have here investigated the 6-desaturation of both linoleic and alpha-linolenic acids in liver microsomes of young and old rats given GLA in the form of evening primrose oil (EPO) (B diet) in comparison to animals given soy bean oil alone (A diet), monitoring also the fatty acid composition of liver microsomes and relating this to the microviscosity of the membranes. In young rats the different experimental diets did not produce any difference in delta 6-desaturase (D6D) activity on either substrate suggesting that, when D6D activity is at or near its peak, the variations in diet tested are unable to influence it. In the old animals the rate of 6-desaturation of linoleic and particularly of alpha-linolenic acid was significantly greater in the B diet fed animals than in the A diet fed. The effects of the diets on the fatty acid composition of liver microsomes were consistent with the findings with regard to 6-desaturation. Administration of GLA partially corrected the abnormalities of n-6 essential fatty acid (EFA) metabolism by raising the concentration of 20:4(n-6) and other 6-desaturated EFAs. Furthermore, the GLA rich diet also increased the levels of dihomo-gamma-linolenic acid and of 6-desaturated n-3 EFAs in the liver microsomes. The microviscosity of microsomal membranes as indicated by DPH polarization was correlated with the unsaturation index of the same membranes. There was a very strong correlation between the two. In both young and old rats the B diet reduced the microviscosity and increased the unsaturation index. However, the effect was much greater in the old animals.  相似文献   

17.
Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.  相似文献   

18.
In order to study the effects of saturated fatty acids on delta6-desaturase activity, rat hepatocytes in primary culture were incubated with lauric (C12:0), myristic (C14:0) or palmitic (C16:0) acids. After optimization, the standard in vitro conditions for the measurement of delta6-desaturase activity were as follows: 60 micromol x L(-1) alpha-linolenic acid (C18:3n-3), reaction time of 20 min and protein content of 0.4 mg. Data showed that cell treatment with 0.5 mmol x L(-1) myristic acid during 43 h specifically increased delta6-desaturase activity. This improvement, reproducible for three substrates of delta6-desaturase, i.e. oleic acid (C18:1n-9), linoleic acid (C18:2n-6) and alpha-linoleic acid (C18:3n-3) was dose-dependent in the range 0.1-0.5 mmol x L(-1) myristic acid concentration.  相似文献   

19.
20.
Gamma linolenic acid (GLA; C18:3Δ6,9,12 cis), also known as γ-Linolenic acid, is an important essential fatty acid precursor for the synthesis of very long chain polyunsaturated fatty acids and important pathways involved in human health. GLA is synthesized from linoleic acid (LA; C18:2Δ9,12 cis) by endoplasmic reticulum associated Δ6-desaturase activity. Currently sources of GLA are limited to a small number of plant species with poor agronomic properties, and therefore an economical and abundant commercial source of GLA in an existing crop is highly desirable. To this end, the seed oil of a high LA cultivated species of safflower (Carthamus tinctorius) was modified by transformation with Δ6-desaturase from Saprolegnia diclina resulting in levels exceeding 70% (v/v) of GLA. Levels around 50% (v/v) of GLA in seed oil was achieved when Δ12-/Δ6-desaturases from Mortierella alpina was over-expressed in safflower cultivars with either a high LA or high oleic (OA; C18:1Δ9 cis) background. The differences in the overall levels of GLA suggest the accumulation of the novel fatty acid was not limited by a lack of incorporation into the triacylgylcerol backbone (>66% GLA achieved), or correlated with gene dosage (GLA levels independent of gene copy number), but rather reflected the differences in Δ6-desaturase activity from the two sources. To date, these represent the highest accumulation levels of a newly introduced fatty acid in a transgenic crop. Events from these studies have been propagated and recently received FDA approval for commercialization as Sonova?400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号