首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the functional role of CPR1 in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wildtype strain of KNU5377. Among the proteins, Sod1p, Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the cpr1Delta mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the cpr1Delta mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.  相似文献   

2.
3.
Pma1p is an essential plasma membrane H+-pump in Saccharomyces cerevisiae that pumps out H+ at the expense of cellular ATP. Its activity is induced by glucose at 30°C and is inhibited by Hsp30 during exposure to heat shock conditions. To further investigate the regulation of Pma1 function by glucose and Hsp30 during exposure to thermal stress, we estimated Pma1 activity, its protein levels and ser-phosphorylation status in membrane fractions isolated from BY4741 and hsp30Δ cells grown in dextrose and sorbitol at 30°C, and following exposure at 40°C for 30 min. Our results demonstrate that Pma1 activity and protein levels were reduced in Hsp30+ cells following exposure to thermal stress in dextrose media. The above was not observed in hsp30Δ cells wherein Pma1 activity did not decrease following exposure to similar conditions. Although Pma1p levels decreased in heat-shocked hsp30Δ cells, it was lower compared to that observed in Hsp30+ cells. Total ser-phosphorylation of Pma1 also showed a decrease following exposure to heat shock condition in dextrose media in both BY4741 and hsp30Δ cells. Its levels were also reduced in BY4741 cells upon heat shock treatment in sorbitol unlike that observed in hsp30Δ cells wherein it was increased. Taken together the above indicate that heat shock induced reduction in Pma1 activity and protein levels in dextrose media required Hsp30. To examine functional interactions between dextrose utilization, Hsp30 and the regulation of various aspects of Pma1, we determined if dextrose regulated other functions attributed to Hsp30. Results demonstrate that the deletion of HSP30 rendered cells dependent on dextrose utilization for survival during exposure to lethal heat stress. Our study has hence been able to establish a functional relationship between glucose utilization, Hsp30 function and the regulation of Pma1 activity. Finally, since the deletion of HSP30 renders Pma1p levels and its activity unresponsive to thermal stress in dextrose media, we concluded that Hsp30 is necessary to maintain Pma1 in a regulation competent conformation. Hsp30 may thus act as a chaperone in the S. cerevisiae plasma membrane.  相似文献   

4.
The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2′,7′-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.  相似文献   

5.

Background  

Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain.  相似文献   

6.
Growth of Saccharomyces cerevisiae ure2Δ mutant strain was investigated in the presence of diverse oxidant compounds. The inability of the strain to grow on a medium supplemented with H2O2 was confirmed and a relationship between diminishing levels of glutathione (GSH) and peroxide sensitivity was established. Data for the lack of significant effect of URE2 disruption on the cellular growth in the presence of paraquat and menadione were obtained. The possible role of Ure2p in acquiring sensitivity to oxidative stress by means of its regulatory role in the GATA signal transduction pathway was discussed. It was suggested that the susceptibility of ure2Δ mutant to the exogenous hydrogen peroxide can result from increased GSH degradation due to the deregulated localization of the γ-glutamyl transpeptidase activating factors Gln3/Gat1. The important role of Ure2p in in vivo glutathione-mediated reactive oxygen species (ROS) scavenging was shown by measuring the activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD) and catalase in an URE2 disrupted strain. A time-dependent increase in SOD and catalase activity was observed. More importantly, it was shown that the ure2 mutation could cause significant disturbance in cellular oxidant balance and increased ROS level.  相似文献   

7.
The Saccharomyces cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Ye1047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1p and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.  相似文献   

8.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

9.
10.
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.  相似文献   

11.
In this study, we characterized a putative peroxidase Prx1 of Candida albicans by: 1) demonstrating the thioredoxin-linked peroxidase activity with purified proteins, 2) examining the sensitivity to several oxidants and the accumulation of intracellular reactive oxygen species with a null mutant (prx1Δ), a mutant (C69S) with a point mutation at Cys69, and a revertant, and 3) subcelluar localization. Enzymatic assays showed that Prx1 is a thioredoxin-linked peroxidase which reduces both hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BOOH). Compared with two other strong H2O2 scavenger mutants for TSA1 and CAT1, prx1Δ and C69S were less sensitive to H2O2, menadione and diamide at all concentrations tested, but were more sensitive to low concentration of t-BOOH. Intracellular reactive oxygen species accumulated in prx1Δ and C69S cells treated with t-BOOH but not H2O2. These results suggest that peroxidase activity of Prx1 is specified to t-BOOH in cells. In both biochemical and physiological cases, the evolutionarily conserved Cys69 was found to be essential for the function. Immunocytochemical staining revealed Prx1 is localized in the cytosol of yeast cells, but is translocated to the nucleus during the hyphal transition, though the significances of this observation are unclear. Our data suggest that PRX1 has a thioredoxin peroxidase activity reducing both t-BOOH and H2O2, but its cellular function is specified to t-BOOH.  相似文献   

12.
13.
The response regulator protein is a core element of two-component signaling pathway. In this study, we investigated functions of BRRG-1 of Botrytis cinerea, a gene that encodes a putative response regulator protein, which is homologous to Rrg-1 in Neurospora crassa. The BRRG-1 gene deletion mutant ΔBrrg1-62 was unable to produce conidia. The mutant showed increased sensitivity to osmotic stress mediated by NaCl and KCl, and to oxidative stress generated by H2O2. Additionally, the mutant was more sensitive to the fungicides iprodione, fludioxonil, and triadimefon than the parental strain. Western-blot analysis showed that the Bos-2 protein, the putative downstream component of Brrg-1, was not phosphorylated in the ΔBrrg1-62. Real-time polymerase chain reaction assays showed that expression of BOS-2 also decreased significantly in the mutant. All of the defects were restored by genetic complementation of the ΔBrrg1-62 with the wild-type BRRG-1 gene. Plant inoculation tests showed that the mutant did not show changes in pathogenicity on rapeseed leaves. These results indicated that Brrg-1 is involved in the regulation of asexual development, sensitivity to iprodione, fludioxonil, and triadimefon fungicides, and adaptation to osmotic and oxidative stresses in B. cinerea.  相似文献   

14.
Checkpoints are components of signalling pathways involved in genome stability. We analysed the putative dual functions of Rad17 and Chk1 as checkpoints and in DNA repair using mutant strains of Saccharomyces cerevisiae. Logarithmic populations of the diploid checkpoint-deficient mutants, chk1Δ/chk1Δ and rad17Δ/rad17Δ, and an isogenic wild-type strain were exposed to the radiomimetic agent bleomycin (BLM). DNA double-strand breaks (DSBs) determined by pulsed-field electrophoresis, surviving fractions, and proliferation kinetics were measured immediately after treatments or after incubation in nutrient medium in the presence or absence of cycloheximide (CHX). The DSBs induced by BLM were reduced in the wild-type strain as a function of incubation time after treatment, with chromosomal repair inhibited by CHX. rad17Δ/rad17Δ cells exposed to low BLM concentrations showed no DSB repair, low survival, and CHX had no effect. Conversely, rad17Δ/rad17Δ cells exposed to high BLM concentrations showed DSB repair inhibited by CHX. chk1Δ/chk1Δ cells showed DSB repair, and CHX had no effect; these cells displayed the lowest survival following high BLM concentrations. Present results indicate that Rad17 is essential for inducible DSB repair after low BLM-concentrations (low levels of oxidative damage). The observations in the chk1Δ/chk1Δ mutant strain suggest that constitutive nonhomologous end-joining is involved in the repair of BLM-induced DSBs. The differential expression of DNA repair and survival in checkpoint mutants as compared to wild-type cells suggests the presence of a regulatory switch-network that controls and channels DSB repair to alternative pathways, depending on the magnitude of the DNA damage and genetic background. Nelson Bracesco and Ema C. Candreva have contributed equally to this article.  相似文献   

15.
Sex in fungi is driven by peptide pheromones sensed through seven‐transmembrane pheromone receptors. In Cryptococcus neoformans, sexual reproduction occurs through an outcrossing/heterothallic a ‐ sexual cycle or an inbreeding/homothallic – unisexual mating process. Pheromone receptors encoded by the mating‐type locus ( MAT ) mediate reciprocal pheromone sensing during opposite‐sex mating and contribute to but are not essential for unisexual mating. A pheromone receptor‐like gene, CPR2 , was discovered that is not encoded by MAT and whose expression is induced during a ‐ mating. cpr2 mutants are fertile but have a fusion defect and produce abnormal hyphal structures, whereas CPR2 overexpression elicits unisexual reproduction. When heterologously expressed in Saccharomyces cerevisiae , Cpr2 activates pheromone responses in the absence of any ligand. This constitutive activity results from an unconventional residue, Leu222, in place of a conserved proline in transmembrane domain six; a Cpr2L222P mutant is no longer constitutively active. Cpr2 engages the same G‐protein activated signalling cascade as the Ste3 a /α pheromone receptors, and thereby competes for pathway activation. This study established a new paradigm in which a naturally occurring constitutively active G protein‐coupled receptor governs morphogenesis in fungi.  相似文献   

16.
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40 degrees C. The KNU5377 strain evidenced a very similar growth rate at 40 degrees C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43 degrees C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43 degrees C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.  相似文献   

17.

Background  

Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids.  相似文献   

18.
Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.  相似文献   

19.
《Process Biochemistry》2010,45(4):487-492
A thermotolerant ethanol-fermenting yeast, Saccharomyces cerevisiae KNU5377, isolated from a sludge of a local industrial complex stream in Korea, was evaluated for its capability for lignocellulosic ethanol production from waste newsprint in high temperature. In this fermentation, most of dry-defibrated waste newspaper was first saccharified at 50 °C for 108 h using a commercial cellulase and, then with the last addition of dry-defibrated newsprints to the pre-saccharified broth, simultaneous saccharification and fermentation (SSF) of 1.0 L of reaction mixture was carried out at 40 °C, slowly being dropped from 50 °C, for further 72 h in a 5 L fermentor by inoculating the overnight culture of KNU5377. The maximum production of 8.4% (v/v) ethanol was obtained when 250 g (w/v)/L of dry-defibrated waste newspaper was used for ethanol production by SSF. These results suggest that S. cerevisiae KNU5377 is very useful for cellulose ethanol production by the SSF system.  相似文献   

20.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone and a U-box ubiquitin ligase that plays a crucial role in protein quality control in higher eukaryotes. The yeast Yarrowia lipolytica is the only known hemiascomycete where a CHIP ortholog is found. Here, we characterize Y. lipolyticas CHIP ortholog (Yl.Chn1p) and document its interactions with components of the protein quality control machinery. We show that Yl.Chn1p is non-essential unless Y. lipolytica is severely stressed. We sought for genetic interactions among key components of the Y. lipolytica protein quality control arsenal, including members of the Ssa-family of Hsp70 molecular chaperones, the Yl.Bag1p Hsp70 nucleotide exchange factor, the Yl.Chn1p and Yl.Ufd2p U-box ubiquitin ligases, the Yl.Doa10p and Yl.Hrd1p RING-finger ubiquitin ligases, and the Yl.Hsp104p disaggregating molecular chaperone. Remarkably, no synthetic phenotypes were observed among null alleles of the corresponding genes in most cases, suggesting that overlapping pathways efficiently act to enable Y. lipolytica cells to survive under harsh conditions. Yl.Chn1p interacts with mammalian and Saccharomyces cerevisiae members of the Hsp70 family in vitro, and these interactions are differently regulated by Hsp70 co-chaperones. We demonstrate notably that Yl.Chn1p/Ssa1p interaction is Fes1p-dependent and the formation of an Yl.Chn1p/Ssa1p/Sse1p ternary complex. Finally, we show that, similar to Sse1p, Yl.Chn1p can act as a “holdase” to prevent the aggregation of a heat-denatured protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号