首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

2.
Soluble (Na+ + K+)-ATPase consisting predominantly of alpha beta-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na+ + K+)-ATPase (35-48 mumol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na+ + K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5-3, at which 50-70% of the membrane protein was solubilized. The soluble protomeric (Na+ + K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5-6, at the expense of partial inactivation, but (Na+ + K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na+ + K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000-170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (alpha beta)2-dimers or (alpha beta)3-trimers with S20,w = 10-12 S and apparent molecular masses in the range 273 000-386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

3.
The bi-exponential time-course of detergent inactivation at 37 degrees C of C12E8-solubilized (Na+ + K+)-ATPase from shark rectal glands and ox kidney was investigated. The data for shark enzyme, obtained at detergent/protein weight ratios between 2 and 16, are interpreted in terms of a simple model where the membrane bound enzyme is solubilized predominantly as (alpha-beta)2 diprotomers at low detergent concentrations and as alpha-beta protomers at high C12E8 (octaethyleneglycoldodecylmonoether) concentrations. It is observed that the protomers are inactivated 15-fold more rapidly than the diprotomers, and that the rate of inactivation of both oligomers is proportional to the detergent/protein ratio. Inactivation of kidney enzyme was biexponential with a very rapid inactivation of up to 40% of the enzyme activity. The observed rate of inactivation of the slower phase varied with the detergent/protein ratio, but the inactivation pattern for the kidney enzyme could not readily be accommodated within the model for inactivation of the shark enzyme. The rates of inactivation at 37 degrees C were about the same in KCl and NaCl, i.e., in the E2(K) and E1 X Na forms, for both enzymes.  相似文献   

4.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

5.
Gel filtration of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonother ( C12E8 ) has been performed under conditions where active (alpha beta)2 dimers (Mr 265000) are obtained, and under conditions where dissociation into alpha beta monomers occurs without appreciable loss of activity. It is shown that the alpha beta monomers aggregate with time to form (alpha beta)2 dimers at low detergent concentrations with no change in enzymatic activity. At high detergent concentrations the aggregation is much slower, but the enzymatic activity is lost rapidly. Polyacrylamide gel electrophoresis in the presence of C12E8 also suggest that high concentrations of detergent dissociate the (alpha beta)2 dimer into smaller particles, and conditions for gel electrophoresis are described. The inactivating effect of C12E8 at high C12E8 /protein ratios can be related to a delipidation of the enzyme, with about 0.19 mg phospholipid required per mg protein for optimal activity. The experiments suggest that the solubilized (Na+ + K+)-ATPase can be disrupted into particles containing only one alpha-chain and one or two beta-chains without irreversible loss of activity, and that the stable form of the enzyme is an (alpha beta)2 dimer.  相似文献   

6.
Occlusion of Rb+ by C12E8-solubilized (Na+ + K+)-ATPase from shark salt glands has been measured. The rate of de-occlusion at room temperature is about 1 s-1, which is the same as for the membrane-bound enzyme. The amount of Rb+ occluded is 3 moles Rb+ per mole membrane-bound shark enzyme, whereas only about 2 moles Rb+ are occluded by the C12E8-solubilized enzyme.  相似文献   

7.
Mechanisms of detergent effects on membrane-bound (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
Because the nonionic detergent octaethylene glycol dodecyl ether has been used extensively for studies on active solubilized preparations of (Na+ + K+)-ATPase, we tried to see if the detergent alters the properties of the membrane-bound enzyme prior to solubilization. Addition of the detergent, at concentrations below its critical micellar concentration, to reaction mixtures containing the highly purified membrane-bound enzyme reduced the K0.5 of ATP for (Na+ + K+)-dependent ATPase activity without affecting the maximal velocity or abolishing the negative cooperativity of the substrate-velocity curve. Under these conditions, however, the enzyme was not solubilized as evidenced by complete sedimentation of the membrane fragments containing the enzyme upon centrifugation at 100,000 X g for 30 min. Other nonsolubilizing effects of the detergent included an increase in K0.5 of K+, inhibition of Na+-dependent ATPase with no effect on K0.5 of ATP for this activity, and reductions in the spontaneous decomposition rates of the K+-sensitive phosphoenzyme obtained from ATP and the phosphoenzyme obtained from Pi. The nonsolubilizing effects of the detergent on the purified enzyme were obtained with no detectable lag, were readily reversible, and could be distinguished from its vesicle-opening effects on crude membrane preparations. Several other nonionic and ionic detergents had similar effects on the enzyme. The findings indicate (a) detergent binding to hydrophobic sites on extramembranous segments of enzyme subunits; (b) that occupation of these sites mimics the effects of ATP at a low-affinity regulatory site with no effect on high-affinity ATP binding to the catalytic site; and (c) that in studies on detergent-solubilized preparations, it is necessary to distinguish between the effects of solubilization per se and detergent effects at the regulatory site.  相似文献   

8.
The properties of sarcoplasmic reticulum Ca2+-ATPase have been studied after modification of the ATP high affinity binding site with fluorescein isothiocyanate, both in the membranous state and after solubilization with the nonionic detergent, octaethyleneglycol monododecyl ether. Total inactivation of both membrane-bound and solubilized Ca2+-ATPase requires covalent attachment of 1 mol of fluorescein/mol of enzyme (115,000 g of protein) or per binding site for ATP. Sedimentation velocity studies of soluble enzyme showed that both unlabeled and fluorescein-labeled Ca2+-ATPase were present in a predominantly monomeric form. The phosphorylation level of unlabeled Ca2+-ATPase was unchanged by solubilization. Dephosphorylation measurements at 0 degree C indicated that the phosphorylation is an intermediate in the ATPase reaction catalyzed by solubilized Ca2+-ATPase. Fluorescein labeling of half of the Ca2+-ATPase in the membrane did not influence the enzyme kinetics of the remaining unmodified Ca2+-ATPase. Measurements of both fluorescein and tryptophan fluorescence indicated that the soluble monomer of Ca2+-ATPase like the membrane-bound enzyme exists in a Ca2+-dependent equilibrium between two principal conformations (E and E). E (absence of Ca2+) is unstable in the soluble form, but the pCa dependence of the E - E equilibrium is identical with that of the membranous Ca2+-ATPase (pCa0.5 = 6.7 and Hill coefficient 2). These results suggest that the Ca2+-ATPase polypeptides function with a high degree of independence in the membrane.  相似文献   

9.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane-bound (Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6--8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350--400 mumol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

10.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

11.
An increase in pH shifts the equilibrium between the K+-form and the Na+-form of the (Na+ + K+)-ATPase towards the Na+-form. pK for the proton effect on the equilibrium is decreased by modification of the enzyme with pyridoxal 5-phosphate. The reactivity of the enzyme towards pyridoxal 5-phosphate is increased by an increase in pH. Modification by pyridoxal 5-phosphate of epsilon-amino groups on lysine, which has a pK of about 8 with the enzyme in the K+-form and of about 7.4 in the Na+-form, shifts the equilibrium between E1Na+ and E2 towards E2, and the equilibrium between E2(K+occ) and E2 towards E2, but has no effect on the overall equilibrium between E1Na+ and E2(K+occ). An additional modification of epsilon-amino groups on lysine, which has a pK of 9.5-10 with the enzyme in the K+-form and of about 7.7 with the enzyme in the Na+-form, shifts the equilibrium between E2(K+occ) and E1Na+ towards E1Na+; this is due to a shift in the equilibrium between E2(K+occ) and E2 towards E2, but with no effect on the equilibrium between E1Na+ and E2. The results show that the transition from the K+-form to the Na+-form decreases the pK of lysine epsilon-amino groups on the enzyme, and that the protonation of these groups influences the equilibrium between the two conformations.  相似文献   

12.
The detergent solubilization of dog kidney (Na + K)-ATPase has been investigated. The nonionic detergents, Brij 58, C12E8, and Lubrol WX were tested for their ability to produce active, soluble enzyme. Lubrol WX gave the best results. Enzyme so treated is found in the supernatant fraction after centrifugation at 100,000g for 1 h. It has the same or slightly greater specific activity, the same subunit composition as judged by SDS-gel electrophoresis, and very similar kinetic parameters with respect to sodium, potassium, ATP, pNPP, and ouabain as the membrane-bound enzyme. The Lubrol-treated enzyme is stable for at least 5 days at 4 °C. The phospholipid content of the Lubrol-treated enzyme is decreased, as might be expected, by about 50%. Limited tryptic proteolysis and fluorescence changes seen after modification with FITC indicate that the solubilized (Na + K)-ATPase undergoes the same conformational transitions as the membrane enzyme. Our results indicate that kidney enzyme solubilized as described here is nondenatured and fully active, and therefore a valuable preparation for spectroscopic and other approaches for study of this enzyme.  相似文献   

13.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

14.
Membrane-bound (Na+ + K+)-ATPase from pig kidney outer medulla shows apparent heterogeneity in its ATP-binding site population when assays are carried out in the presence of K+. This finding has been interpreted as being due to interaction between (at least) two subunits, each containing an ATP-binding site. Treating the membrane-bound enzyme with the detergent, C12E8, has been shown to solubilize enzymatically active alpha beta-protomers. We show that in the dissolved enzyme all ATP-binding sites in the population are identical both in the absence and in the presence of K+, which would be consistent with an abolition of identical both in the absence and in the presence of K+, which would be consistent with an abolition of subunit-subunit interaction. This supports previous suggestions that enzyme solubilized by C12E8 is monomeric and that the membrane-bound enzyme is not. Differential extraction of enzyme-containing membranes with C12E8 yielded preparations with an ATP-binding capacity of up to 5.8 nmol per mg protein, measured by the method of Lowry et al. (Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275), with bovine serum albumin as standard. Evidence is presented that makes it likely that preparations with an ATP-binding capacity of 7.5 nmol per mg protein (as determined by the above-mentioned assay) will be obtainable. This corresponds to an alpha beta-protomer molecular weight of 133 000 which approximates closely to the minimum value found in the literature for an alpha beta-protomer (i.e., 126 000).  相似文献   

15.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the alpha- and beta-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis alpha-toxin-Sepharose columns. The data suggest that the alpha-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

16.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

17.
(Na+ + K+)-ATPase from rectal glands of the spiny dogfish has been reconstituted into phospholipid vesicles. The nonionic detergent octaethyleneglycoldodecyl monoether ( C12E8 ) is used to dissolve both the enzyme and the lipids and reconstitution is accomplished by subsequent removal of the detergent by adsorption to polystyrene beads. About 60% of the enzyme incorporates in the right-side-out orientation (r/o). The fraction of molecules in the inside-out orientation (i/o) increases from about 10% to about 30% with a parallel decrease in the fraction of 'non-oriented' (n-o) molecules (both sides exposed) when the protein/lipid ratio decreases from 1:10 to 1:75. The orientation of enzyme molecules detected from vanadate binding is the same as measured from activity, i.e., the turnover of the enzyme molecule in the different orientations is the same. The recovery of the specific activity of the incorporated enzyme increases with an increase in the protein/lipid ratio and is 100% with a protein/lipid ratio of about 1:20 or higher. Full recovery is only obtained provided a proper lipid composition is chosen which includes both negatively charged phospholipids, preferably phosphatidylinositol, and cholesterol. The ATP-dependent, K+-stimulated Na+-influx is found to be about 35 mumol Na+ per mg (i/o)-protein per min at 22 degrees C in 1:10 protein/lipid liposomes. The specific activity corresponds to 3 Na+ transported per ATP molecule hydrolyzed.  相似文献   

18.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

19.
6-carboxy-eosin is introduced as a sensitive, non-covalently bound fluorescent probe for monitoring conformational changes in detergent-solubilized Na,K-ATPase. The dissociation constant for 6-carboxy-eosin is about 0.1 microM in 20 mM NaCl at 6 degrees C (pH 7.0) for Na,K-ATPase solubilized in C12E8. It is shown that the slow conformational change from E2 (in K+) to E1 (in Na+) is 4-fold more rapid in the solubilized state than in the membrane-bound state, both for shark rectal gland and pig kidney Na,K-ATPase. The rate of the E1 to E2 transition is rapid and of the same order of magnitude both for the membrane-bound and the solubilized enzyme. All conformational transitions are considerably slower for pig kidney enzyme than for shark enzyme, both in the membrane-bound and in the solubilized state.  相似文献   

20.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the beta-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between beta-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号