首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Infection of human B cells with Epstein-Barr virus (EBV) induces polyclonal activation in almost all infected cells, but a small proportion of infected cells are transformed to immortalized lymphoblastoid cell lines. Since B cells are activated also by CD40 ligand (CD40L) and Toll-like receptor (TLR) agonists via a similar signaling pathway, it is likely that costimulation through these molecules could result in synergistic enhancement of the transformation efficiency of EBV. In this study, the stimulatory effect of TLR7/8 (R848), TLR9 (CpG) agonists and/or CD40L on transformation efficiency of EBV in normal human B cells was assessed using the limiting dilution assay. Costimulation of peripheral blood mononuclear cells (PBMCs) with CpG and R848, but not CD40L, increased significantly the frequency of EBV transformed B cells (p < 0.001). Neither synergistic nor additive effects were observed between TLR agonists and CD40L and also TLR7/8 and TLR9 agonists. Costimulation with R848, CpG and CD40L enhanced the proliferative response of B cells infected with EBV. This effect was more evident when enriched B cells were employed, compared to PBMCs. The promoting effect of TLR agonists stimulation, implies that EBV may take advantage of the genes induced by the TLR stimulation pathway for viral latency and oncogenesis.  相似文献   

2.
HIV‐1 traffics through dendritic cells (DCs) en route to establishing a productive infection in T lymphocytes but fails to induce an innate immune response. Within DC endosomes, HIV‐1 somehow evades detection by the pattern‐recognition receptor (PRR) Toll‐like receptor 8 (TLR8). Using a phosphoproteomic approach, we identified a robust and diverse signaling cascade triggered by HIV‐1 upon entry into human DCs. A secondary siRNA screen of the identified signaling factors revealed several new mediators of HIV‐1 trans‐infection of CD4+ T cells in DCs, including the dynein motor protein Snapin. Inhibition of Snapin enhanced localization of HIV‐1 with TLR8+ early endosomes, triggered a pro‐inflammatory response, and inhibited trans‐infection of CD4+ T cells. Snapin inhibited TLR8 signaling in the absence of HIV‐1 and is a general regulator of endosomal maturation. Thus, we identify a new mechanism of innate immune sensing by TLR8 in DCs, which is exploited by HIV‐1 to promote transmission.  相似文献   

3.
The intracellular Toll-like receptor 9 (TLR9) is unique in its ability to recognize single-stranded DNA unmethylated at CpG motifs. Work from this laboratory showed that plasmid DNA is spontaneously internalized in B lymphocytes. This event is followed by the upregulation of costimulatory molecules and the acquisition of antigen presenting function by these cells. However, it is not known whether this phenomenon depends on TLR9. Because of the relevant role played by DNA-based drugs in immunotherapy and vaccination, and the central role of TLR9 signaling by CpG motifs, we decided to investigate whether signaling through TLR9 is a prerequisite for spontaneous transgenesis of lymphocytes. Here we found that transgene expression and upregulation of CD40 and CD86 costimulatory molecules was not inhibited by chloroquine treatment. Spontaneous transgenesis also occurred in B lymphocytes from TLR9-/- mice, and the injection of TLR9-/- transgenic B lymphocytes in C57Bl/6 mice induced both CD4 and CD8 T cell responses comparable to those induced by wild-type B lymphocytes. Collectively, these results suggest that plasmid DNA activates mammalian B lymphocytes through a TLR9 independent pathway.  相似文献   

4.
Costimulation blockade protocols are effective in prolonging allograft survival in animal models and are entering clinical trials, but how environmental perturbants affect graft survival remains largely unstudied. We used a costimulation blockade protocol consisting of a donor-specific transfusion and anti-CD154 mAb to address this question. We observed that lymphocytic choriomeningitis virus infection at the time of donor-specific transfusion and anti-CD154 mAb shortens allograft survival. Lymphocytic choriomeningitis virus 1) activates innate immunity, 2) induces allo-cross-reactive T cells, and 3) generates virus-specific responses, all of which may adversely affect allograft survival. To investigate the role of innate immunity, mice given costimulation blockade and skin allografts were coinjected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid), TLR4 (LPS), or TLR9 (CpG) agonists. Costimulation blockade prolonged skin allograft survival that was shortened after coinjection by TLR agonists. To investigate underlying mechanisms, we used "synchimeric" mice which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, coadministration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells and shortened skin allograft survival. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) up-regulated CD44, and 3) failed to undergo apoptosis. B6.TNFR2-/- and B6.IL-12R-/- mice treated with costimulation blockade plus LPS also exhibited short skin allograft survival whereas similarly treated B6.CD8alpha-/- and TLR4-/- mice exhibited prolonged allograft survival. We conclude that TLR signaling abrogates the effects of costimulation blockade by preventing alloreactive CD8+ T cell apoptosis through a mechanism not dependent on TNFR2 or IL-12R signaling.  相似文献   

5.
We compared TLR responsiveness in PBMC from HIV-1-infected and uninfected individuals using the TLR agonists: TLR7 (3M-001), TLR8 (3M-002), and TLR7/8 (3M-011). Activation and maturation of plasmacytoid dendritic cells (pDC) were measured by evaluating CD86, CD40, and CD83 expression and myeloid dendritic cell (mDC) activation was measured by evaluating CD40 expression. All agonists tested induced activation and maturation of pDC in PBMC cultures of cells from HIV+ and HIV- individuals. The TLR7 agonist induced significantly less pDC maturation in cells from HIV+ individuals. Quantitative assessment of secreted IFN-alpha and pro-inflammatory cytokines at the single cell level showed that pDC from HIV+ individuals stimulated with TLR7 and TLR7/8 induced IFN-alpha. TLR8 and TLR7/8 agonists induced IL-12 and COX-2 expression in mDC from HIV+ and HIV- individuals. Understanding pDC and mDC activation and maturation in HIV-1 infection could lead to more rational development of immunotherapeutic strategies to stimulate the adaptive immune response to HIV-1.  相似文献   

6.
The role of TLR4 in mature B cell activation is well characterized. However, little is known about TLR4 role in B cell development. Here, we analyzed the effects of TLR4 and TLR2 agonists on B cell development using an in vitro model of B cell maturation. Highly purified B220(+)IgM(-) B cell precursors from normal C57BL/6 mouse were cultured for 72 h, and B cell maturation in the presence of the TLR agonists was evaluated by expression of IgM, IgD, CD23, and AA4. The addition of LPS or lipid A resulted in a marked increase in the percentage of CD23(+) B cells, while Pam3Cys had no effect alone, but inhibited the increase of CD23(+) B cell population induced by lipid A or LPS. The TLR4-induced expression of CD23 is not accompanied by full activation of the lymphocyte, as suggested by the absence of activation Ag CD69. Experiments with TLR2-knockout mice confirmed that the inhibitory effects of Pam3Cys depend on the expression of TLR2. We studied the effects of TLR-agonists on early steps of B cell differentiation by analyzing IL-7 responsiveness and phenotype of early B cell precursors: we found that both lipid A and Pam3Cys impaired IL-7-dependent proliferation; however, while lipid A up-regulates B220 surface marker, consistent with a more mature phenotype of the IgM(-) precursors, Pam3Cys keeps the precursors on a more immature stage. Taken together, our results suggest that TLR4 signaling favors B lymphocyte maturation, whereas TLR2 arrests/retards that process, ascribing new roles for TLRs in B cell physiology.  相似文献   

7.
8.
B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.  相似文献   

9.
Influenza is a ssRNA virus that has been responsible for widespread morbidity and mortality; however, the innate immunological mechanisms that drive the adaptive anti-influenza immune response in vivo are yet to be fully elucidated. TLRs are pattern recognition receptors that bind evolutionarily conserved pathogen-associated molecular patterns, induce dendritic cell maturation, and consequently aid the development of effective immune responses. We have examined the role of TLRs in driving effective T and B cell responses against influenza virus. We found TLR3 and its associated adapter molecule, Toll/IL-R domain-containing adaptor-inducing IFN-beta, did not play a role in the development of CD4(+) or CD8(+) T cell responses against influenza virus, nor did they influence influenza-specific B cell responses. Surprisingly, TLR7 and MyD88 also played negligible roles in T cell activation and effector function upon infection with influenza virus; however, their signaling was critical for regulating anti-influenza B cell Ab isotype switching. The induction of appropriate anti-influenza humoral responses involved stimulation of TLRs on B cells directly and TLR-induced production of IFN-alpha, which acted to reduce IgG1 and increase IgG2a/c class switching. Notably, direct TLR signaling on B cells or T cell help through the CD40-CD40L interaction was sufficient to support B cell proliferation and IgG1 production, whereas IFN-alpha was critical for fine-tuning the nature of the isotype switch. Taken together, these data reveal that TLR signaling is not required for anti-influenza T cell responses, but through both direct and indirect means orchestrates appropriate anti-influenza B cell responses.  相似文献   

10.
TLR2 activation plays a crucial role in Neisseria gonorrheae-mediated enhancement of HIV infection of resting CD4(+) T cells. We examined signaling pathways involved in the HIV enhancing effect of TLR2. TLR2 but not IL-2 signals promoted HIV nuclear import; however, both signals were required for the maximal enhancing effect. Although TLR2 signaling could not activate T cells, it increased IL-2-induced T cell activation. Cyclosporin A and IkBα inhibitor blocked TLR2-mediated enhancement of HIV infection/nuclear import. PI3K inhibitor blocked HIV infection/nuclear import and T cell activation and exerted a moderate inhibitory effect on cell cycle progression in CD4(+) T cells activated by TLR2/IL-2. Blockade of p38 signaling suppressed TLR2-mediated enhancement of HIV nuclear import/infection. However, the p38 inhibitor did not have a significant effect on T cell activation or TCR/CD3-mediated enhancement of HIV infection/nuclear import. The cell cycle arresting reagent aphidicolin blocked TLR2- and TCR/CD3-induced HIV infection/nuclear import. Finally, cyclosporin A and IκBα and PI3K inhibitors but not the p38 inhibitor blocked TLR2-mediated IκBα phosphorylation. Our results suggest that TLR2 activation enhances HIV infection/nuclear import in resting CD4(+) T cells through both T cell activation-dependent and -independent mechanisms.  相似文献   

11.
12.
Toll-like receptor 9 (TLR9) agonists such as unmethylated bacterial CpG DNAs activate B lymphocytes directly, potentially influencing their function and homeostasis. To assess B-cell responsiveness to TLR9 agonists in human immunodeficiency virus (HIV) disease, we examined the ability of naive and memory B cells to proliferation and to increase surface expression of CD80 in response to CpG oligonucleotides (ODN). CpG ODN induced expression of CD80 similarly in B cells from HIV-infected persons and from healthy controls. In contrast, proliferation responses to CpG ODN were markedly impaired in both naive and memory B-cell subsets from HIV-infected persons. Naive B-cell proliferation defects were related to plasma HIV RNA and, among memory B cells, to the frequencies of CD21-negative cells. Importantly, TLR9 mRNA levels were significantly diminished in freshly prepared naive B cells and especially so in memory B cells from HIV-positive viremic donors, suggesting a possible underlying mechanism for the observed functional impairments. Dose-response studies indicated that optimal induction of CD80 expression was achieved with much lower concentrations of CpG ODN than optimal induction of proliferation. We propose that the relatively low threshold of activation that is required for CD80 induction by CpG ODN might explain the preservation of this response in B cells from HIV-infected persons despite diminished TLR9 expression. Impaired responsiveness to TLR9 agonists may contribute to defects in humoral immunity in HIV infection.  相似文献   

13.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

14.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

15.
Epstein-Barr virus (EBV) efficiently drives proliferation of human primary B cells in vitro, a process relevant for human diseases such as infectious mononucleosis and posttransplant lymphoproliferative disease. Human B-cell proliferation is also driven by ligands of Toll-like receptors (TLRs), notably viral or bacterial DNA containing unmethylated CpG dinucleotides, which triggers TLR9. Here we quantitatively investigated how TLR stimuli influence EBV-driven B-cell proliferation and expression of effector molecules. CpG DNA synergistically increased EBV-driven proliferation and transformation, T-cell costimulatory molecules, and early production of interleukin-6. CpG DNA alone activated only memory B cells, but CpG DNA enhanced EBV-mediated transformation of both memory and naive B cells. Ligands for TLR2 or TLR7/8 or whole bacteria had a weaker but still superadditive effect on B-cell transformation. Additionally, CpG DNA facilitated the release of transforming virus by established EBV-infected lymphoblastoid cell lines. These results suggest that the proliferation of EBV-infected B cells and their capability to interact with immune effector cells may be directly influenced by components of bacteria or other microbes present at the site of infection.Epstein-Barr virus (EBV), a herpesvirus, is a very successful infectious agent: it establishes and maintains latent infection in >95% of human beings worldwide. This success is related to EBV''s varied strategies to maintain itself in its preferred host cell type, the B cell, by establishing different modes of latent infection (46). Some of these modes (latency modes 0, I, and II) are characterized by a resting B-cell phenotype and expression of a very limited set of EBV proteins (from none to four). In contrast, latency III involves the expression of at least 12 EBV latent-cycle gene products (10 proteins and 2 RNAs) (30, 31), which in their combined action profoundly alter the B cell''s appearance and behavior by inducing B-cell activation associated with proliferation, altered receptor expression, and cytokine secretion, as well as causing enhanced antigen presentation (31).In these various features, EBV infection of the latency III type resembles physiological activation of B cells in germinal centers even in its molecular details, because EBV closely mimics or constitutively activates some of the B cell''s main signaling pathways. Exogenous physiological signals leading to B-cell activation have been classified as “signal 1,” the stimulation of the B-cell receptor (BCR) by antigen binding; “signal 2,” the stimulation of CD40 by the CD40 ligand molecule, expressed on activated helper T cells; and “signal 3,” the stimulation of Toll-like receptors (TLRs) by microbial components, such as unmethylated CpG DNA, or their mimics. All three signals together are required for maximal proliferation of naive B cells (47). However, stimulation with TLR ligands alone, for example, CpG DNA, is sufficient to cause transient B-cell activation, including proliferation and induction of immune effector molecules such as CD86, a T-cell-costimulatory molecule (24). Additional immune effectors, the cytokines interleukin-6 (IL-6), IL-10, and IL-12, are induced when CpG stimulation is combined with strong CD40 stimulation (55).For primary infection of B cells, it is well established that EBV''s latent membrane proteins LMP2A (10, 39) and LMP1 (22) mimic signaling by the BCR and CD40, respectively. It is less clear whether and how EBV generates a potential signal 3 in the course of primary B-cell infection. A role of the TLR7 pathway has been proposed, based on the observation that EBV infection of naive B cells elevates the expression of TLR7 and its downstream signaling mediators (40). Additional mechanisms have recently been proposed to explain how EBV might trigger TLRs or other pattern recognition receptors in other cellular systems. For example, the Epstein-Barr virus-encoded small RNAs (EBERs) were described to trigger the retinoic acid-inducible gene I (RIG-I)-encoded protein, a receptor for various viral RNAs, in Burkitt''s lymphoma cells (48, 49). TLR2 signaling in monocytes is activated by binding of EBV particles to the cells (21) or by extracellular provision of EBV dUTPase (2).However, a physiologically relevant signal 3 need not originate in EBV itself. Other microbial agents present at the site of EBV infection might influence EBV infection, B-cell transformation, and virus release. For example, infectious mononucleosis (IM), a frequent consequence of primary EBV infection in adolescents and adults, is usually accompanied by tonsillitis with characteristic massive bacterial colonization (50), a likely source of TLR agonists acting on local EBV-infected B cells. Here we investigate the effects of CpG DNA and other exogenous TLR ligands on EBV-driven B-cell proliferation, clonal outgrowth, and induction of activation-associated cellular receptors and cytokines.  相似文献   

16.
Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200−/− mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.  相似文献   

17.
18.
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immune system via TLR7, TLR8, and TLR7/8, respectively. In looking at the effect of the agonists of the TLR7, TLR8, and TLR9 on the activation of NF-kappaB of transfected HEK cells, we discovered that some oligodeoxynucleotides (ODNs) could modulate imidazoquinoline effects in a negative or positive manner. In this study we demonstrate that poly(T) ODNs can inhibit TLR7 and enhance TLR8 signaling events involving NF-kappaB activation in HEK cells and cytokine production (IFN-alpha, TNF, and IL-12) by human primary PBMC. In contrast, TLR3 agonist poly(I:C) does not affect imidazoquinoline-induced responses. The modulation of TLR7 and TLR8 responses is independent of CpG motifs or the nature of the ODN backbone structure. Furthermore, we show that to be an effective modulator, the ODNs need to be in the cell at the same time with either of the TLR7 or TLR8 agonist. We have also demonstrated that there is a physical interaction between IRMs and ODNs. The cross-talk between ODNs, IRMs, and TLR7 and TLR8 uncovered by this study may have practical implications in the field of microbial infections, vaccination, and tumor therapy.  相似文献   

19.
Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-beta). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-alpha- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell alpha chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-alpha, IL-12, and MIP-1alpha. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.  相似文献   

20.
We report in this study that B7h, the ligand for the ICOS costimulatory receptor, is rapidly shed from mouse B cells following either ICOS binding or BCR engagement. Shedding occurs through proteolytic cleavage that releases the extracellular ICOS-binding region of B7h. Prior exposure of B7h-expressing APCs to ICOS-expressing cells inhibits their subsequent ability to costimulate IFN-gamma and IL-4 production from CD4+ T cells. Shedding is regulated as TLR7/8 and TLR9 ligands inhibit B7h shedding. A shedding-resistant B7h mutant elicits greater costimulation of IFN-gamma production from CD4+ T cells than does wild-type B7h. These data define shedding of B7h as a novel mechanism for controlling costimulatory signaling by B7-CD28 family members that is regulated on B cells by TLR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号