首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Herpes simplex virus 1 (HSV-1) genomes are associated with the repressive heterochromatic marks H3K9me2/me3 and H3K27me3 during latency. Previous studies have demonstrated that inhibitors of H3K9me2/me3 histone demethylases reduce the ability of HSV-1 to reactivate from latency. Here we demonstrate that GSK-J4, a specific inhibitor of the H3K27me3 histone demethylases UTX and JMJD3, inhibits HSV-1 reactivation from sensory neurons in vitro. These results indicate that removal of the H3K27me3 mark plays a key role in HSV-1 reactivation.  相似文献   

5.
6.
Gene expression is epigenetically regulated through DNA methylation and covalent chromatin modifications, such as acetylation, phosphorylation, ubiquitination, sumoylation, and methylation of histones. Histone methylation state is dynamically regulated by different groups of histone methyltransferases and demethylases. The trimethylation of histone 3 (H3K4) at lysine 4 is usually associated with the activation of gene expression, whereas trimethylation of histone 3 at lysine 27 (H3K27) is associated with the repression of gene expression. The polycomb repressive complex contains the H3K27 methyltransferase Ezh2 and controls dimethylation and trimethylation of H3K27 (H3K27me2/3). The Jumonji domain containing-3 (Jmjd3, KDM6B) and ubiquitously transcribed X-chromosome tetratricopeptide repeat protein (UTX, KDM6A) have been identified as H3K27 demethylases that catalyze the demethylation of H3K27me2/3. The role and mechanisms of both JMJD3 and UTX have been extensively studied for their involvement in development, cell plasticity, immune system, neurodegenerative disease, and cancer. In this review, we will focus on recent progresses made on understanding JMJD3 in the regulation of gene expression in development and diseases. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

7.
Many developmental control genes contain paused RNA polymerase II (Pol II) and are thereby "poised" for rapid and synchronous activation in the early Drosophila embryo. Evidence is presented that Polycomb group (PcG) repressors can influence paused Pol II. ChIP-Seq and GRO-Seq assays were used to determine the genome-wide distributions of Pol II, H3K27me3, and H3K4me3 in extra sex combs (esc) mutant embryos. ESC is a key component of the Polycomb repressive complex 2 (PRC2), which mediates H3K27me3 modification. Enhanced Pol II occupancy is observed for thousands of genes in esc mutant embryos, including genes not directly regulated by PRC2. Thus, it would appear that silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into "poised" genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants.  相似文献   

8.
9.
组蛋白甲基化是一种重要的表观遗传学修饰,在基因表达调节方面发挥着重要的作用.组蛋白H3赖氨酸27三甲基化(H3K27me3)是一种抑制性组蛋白标记,可被去甲基化酶UTX和JMJD3催化而移去甲基.UTX和JMJD3通过激活HOX基因而参与细胞分化和多能细胞抑制过程.在多种肿瘤中检测到UTX和JMJD3突变或表达下降,同时多种基因启动子区H3K27me3含量增多.UTX和JMJD3均被看作肿瘤抑制基因,其中UTX调节了RB依赖的细胞命运控制,而JMJD3通过激活INK4b-ARF-INK4a位点而参与了癌基因诱导的衰老.组蛋白H3K27去甲基化酶与肿瘤发生的研究使我们对癌症发展过程有了更好的理解,同时也为癌症诊断和治疗提供了新靶点.  相似文献   

10.
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri‐methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3‐enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as “bivalency”. While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage‐specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP‐dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable “bivalent specificity”, often selectively acting on, or selectively depleted from, bivalent domains.  相似文献   

11.
12.
13.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

14.
15.
16.
17.
Bivalent histone modifications in early embryogenesis   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
Tightly balanced antagonism between the Polycomb group (PcG) and the Trithorax group (TrxG) complexes maintain Hox expression patterns in Drosophila and murine model systems. Factors belonging to the PcG/TrxG complexes control various processes in plants as well but whether they participate in mechanisms that antagonize, balance or maintain each other's effects at a particular gene locus is unknown. CURLY LEAF (CLF), an Arabidopsis homolog of enhancer of zeste (EZ) and the ARABIDOPSIS HOMOLOG OF TRITHORAX (ATX1) control the expression of the flower homeotic gene AGAMOUS (AG). Disrupted ATX1 or CLF function results in misexpression of AG, recognizable phenotypes and loss of H3K4me3 or H3K27me3 histone H3-tail marks, respectively. A novel idea suggested by our results here, is that PcG and TrxG complexes function as a specific pair generating bivalent chromatin marks at the silent AG locus. Simultaneous loss of ATX1 and CLF restored AG repression and normalized leaf phenotypes. At the molecular level, disrupted ATX1 and CLF functions did not lead to erasure of the CLF- and ATX1-generated epigenetic marks, as expected: instead, in the double mutants, H3K27me3 and H3K4me3 tags were partially restored. We demonstrate that ATX1 and CLF physically interact linking mechanistically the observed effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号