首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
中国大麦黄花叶病毒分离物的分子变异   总被引:4,自引:0,他引:4  
13个供试的中国和英国大麦黄花叶病毒(BaYMV)分离物,经RNA1和RNA2全基因组不同区域DNA片段背地里单构象多态分析(SSCP),外壳蛋白基因和RNA2 70kD基因5端705碱基序列分析,以及此7-5碱基DNA片段限制性内切酶图谱分析结果,它们的RNA1和RNA2彼此无一相同,其中RNA2变异比RNA1更大。由于变异十分复杂,且没有规律性,因而当前通用的分子生物学技术尚不能简单地BaYM  相似文献   

3.
Summary Antisera were raised against the RNA 2-encoded proteins of 28 kDa and 70 kDa of barley yellow mosaic virus (BaYMV) by using the corresponding cDNA sequences of a German isolate for protein overexpression inEscherichia coli BL 21 and subsequent purification. The proposed processing of a 98 kDa precursor polyprotein encoded by the long open reading frame of RNA 2 to two proteins of 28 kDa and 70 kDa could be confirmed by immunoprecipitation of the in vitro transcribed and translated cDNA-clone of RNA 2 and Western blot analysis of fragmentated protein extracts of BaYMV-infected winter barley plants. In situ localisation studies of infected leaf tissue using immunogold labeling techniques for electron microscopy revealed that both viral proteins of BaYMV (RNA 2) were associated with the crystal-like cytoplasmic inclusion bodies. No other parts of the cells and no other inclusions (pinwheelstructures or aggregated virus particles) showed any gold labeling when the 28 kDa and 70 kDa antisera were used. We suppose that both RNA 2-encoded proteins take part in the formation of the crystal-like cytoplasmic inclusion bodies which are the most dominant structures in the cytoplasm of BaYMV-infected tissue. Possible functions of the 28 kDa and 70 kDa protein of BaYMV (RNA 2) are discussed.Abbreviations PBS phosphate-buffered saline - CEA chicken egg albumin - BaYMV barley yellow mosaic virus - BaMMV barley mild mosaic virus  相似文献   

4.
A procedure was developed to examine amounts of Polymyxa graminis on eleven barley cultivars from a field experiment on a site infested with barley yellow mosaic virus (BaYMV) and which differed in field response to the virus. Powder produced from dried barley roots infected with P. graminis was soaked overnight at 4°C in a solution of 1 % sodium metaphosphate and 0.25% Tween 20. This was followed by high speed homogenisation, filtering, ultrasonic treatment of the residue and differential centrifugation. A suspension of individual resting spores free from other recognisable fungi was obtained, which ranged in concentration from 0.4 to 7.3 × 107spores per g root. Repeated extraction of the residues suggested that most spores were liberated by the first cycle of treatment. The cultivar with the greatest incidence of BaYMV also had the most P. graminis; some cultivars resistant to BaYMV had less P. graminis but there was no general correlation between the incidences of virus and vector.  相似文献   

5.
Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa‐Pro (nuclear inclusion‐a protease) and VPg (viral protein genome‐linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa‐Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV‐infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2‐associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV.  相似文献   

6.
Resting spores (cystosori) of Polymyxa graminis, selected from roots of barley plants infected with barley yellow mosaic virus (BaYMV), were used to start mono-fungal sand cultures. Out of 20 attempts using over 800 cystosori, P. graminis became established in 12, and in two of these BaYMV symptoms also occurred. BaYMV was detected by ELISA in extracts of dried roots heavily infected with cystosori and in zoospores of P. graminis. Calculations suggested that, on average, each zoospore carried less than 100 virus particles. In two virus acquisition experiments, non-viruliferous isolates of P. graminis failed to acquire BaYMV from roots of mechanically-inoculated plants. In two further experiments, non-viruliferous isolates were grown on rooted tillers produced from healthy plants and those infected with BaYMV by either vector or mechanical inoculation. Zoospores and cystosori of P. graminis subsequently transmitted the virus, but only from plants where it had been introduced by the vector. Repeated mechanical transmission appeared to have selected a strain of virus that could not be acquired and/or transmitted by the vector. The results provide convincing evidence that P. graminis is a vector of BaYMV but suggest that, in natural populations, only a small proportion of spores may be viruliferous.  相似文献   

7.
8.
在山东省烟台地区的小麦上发生一种由土壤中禾谷多粘菌Polymyxa graminis传播的病毒病,感病小麦植株表现矮化褪绿和花叶症状.我们于1997年4月从病区采集感病小麦植株,进行了病毒种类鉴定.直接电镜观察发现有二种病毒粒子,一种粒子呈棒状,占大多数,其长度约为300nm和150nm; 另一种粒子呈线状,数量较少,长度为500nm~700nm.免疫电镜结果表明,棒状病毒粒子仅与土传小麦花叶病毒(soil-borne wheat mosaic virus, SBWMV)抗血清反应,而不与小麦黄花叶病毒(wheat yellow mosaic virus,WYMV)抗血清和小麦梭条斑花叶病毒(wheat spindle streat mosaic virus,WSSMV)抗血清反应;反之,线状病毒仅与WYMV、WSSMV抗血清反应,而不与SBWMV抗血清反应.用WYMV和SBWMV两种抗血清同时进行修饰时,线状病毒粒子和棒状病毒粒子均发生反应.  相似文献   

9.
10.
11.
Barley yellow mosaic virus (BaYMV) is the causal agent of a soil-borne systemic mosaic disease on barley. It has been reported in Belgium since the 1980s. The control of this disease is managed almost exclusively through the use of resistant varieties. The resistance of most commercial barley cultivars grown in Europe is conferred mainly by a single recessive gene, rym4. This monogenic resistance provides immunity against BaYMV pathotype 1 and has been mapped on barley chromosome 3HL and shown to be caused by mutations in the translation initiation factor eIF4E. Another pathotype, BaYMV pathotype 2, which appeared in the late 1980s (in Belgium, in the early 1990s), is able to overcome the rym4-controlled resistance. Until recently, this pathotype remained confined to specific locations. During a systematic survey in 2003, mosaic symptoms were observed only on susceptible barley cultivars collected in Belgian fields. BaYMV was detected by ELISA and RT-PCR on the susceptible cultivars and only by RT-PCR on the resistant cultivars. In 2004, mosaic symptoms were observed on susceptible and resistant cultivars. BaYMV was detected by ELISA and RT-PCR on both cultivars. In addition to developing RT-PCR methods for detecting and identifying BaYMV and Barley mild mosaic virus (BaMMV), an RT-PCR targeting the VPg/NIa viral protein part of the genome, known to discriminate the two BaYMV pathotypes, was set up to accurately identify the pathotype(s) now present in Belgium. The sequences from the generated amplicons revealed the single nucleotide substitution resulting in an amino acid change from lysine to asparagine specific to BaYMV pathotype 2. The possible reasons for the change in the BaYMV pathotype situation in Belgium, such as climatic change or a progressive build-up of soil inoculum potential, will be discussed, as well as the use of eIF4E-based resistance.  相似文献   

12.
Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.  相似文献   

13.
The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5–1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.  相似文献   

14.
A viruliferous isolate of the fungal vector Polymyxa graminis was grown on roots of barley cultivars immune or susceptible to barley yellow mosaic virus (BaYMV). Zoospores or resting spores of the vector produced on different cultivars were then inoculated to a virus-susceptible test cultivar. Although the vector established in all treatments, transmission of BaYMV was rare and usually nil from immune cultivars; amounts of virus detected serologically in their roots were very low, thus showing that resistance was to virus multiplication. If immune cultivars decrease the virus content of vector populations in the field, this would have important implications for disease control.  相似文献   

15.
Six monoclonal antibodies (MAbs) against a French isolate of barley yellow mosaic virus (BaYMV) pathotype 2 were produced and their isotypes determined. These MAbs were compared in ELISA for their reactivity with different isolates of BaYMV, wheat yellow mosaic virus (WYMV), wheat spindle streak mosaic virus (WSSMV) and oat mosaic virus (OMV).The six MAbs detected BaYMV in TAS ELISA and western blot, whereas in ACP ELISA no reaction was observed with isolates of BaYMV and WYMV. These MAbs could recognize the sequential motifs situated at the surface of viral particles. The six MAbs detected all the European isolates of BaYMV pathotype 1 and 2 and the Japanese isolate of this viral pathotype 1–1. In contrast to other MAbs, MAb IV did not react with the Japanese isolate of BaYMV pathotype II-l. In TAS ELISA. MAbs I, II, III, and IV detected the Japanese isolate of WYMV and American isolates of WSSMV only when they were captured by anti-WYMV polyclonal antibodies, A French isolate of OMV was detected only by the MAbs I and II in TAS ELISA with Polyclonal anti-BaYMV.  相似文献   

16.
Summary Barley mild mosaic virus (BaMMV) is one of the agents causing the barley yellow mosaic disease. The sequence corresponding to the 3end of the BaMMV RNA1 of a German isolate was sequenced and the coding sequence for the 251 amino acid containing capsid protein was determined. Comparison of this sequence to other potyviral sequences and to the corresponding sequence of two Japanese isolates of BaMMV was done. The three different isolates of BaMMV show a high degree of similarity.Abbrevations BaMMV barley mild mosaic virus - BaYMV barley yellow mosaic virus; bp: base pair - IPTG isopropyl -D thiogalactopyranoside - kb kilo base - NTR nontranslated region - ORF open reading frame - PVDF polyvinylidene difluoride  相似文献   

17.
RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare)   总被引:1,自引:0,他引:1  
The rym3 (formerly designated ym3) gene conferring resistance to barley yellow mosaic virus (BaYMV) is effective against all strains of the virus but up to now has not been mapped to any chromosome. We performed a linkage analysis, using DNA extracted from individually harvested mature leaves of 153 F2 plants derived from a cross between BaYMV-resistant cv ’Ishuku Shirazu’ carrying rym3 and susceptible cv ’Ko A’. Additionally, the F3 lines derived from F2 plants were grown in the BaYMV-infested field and examined for their reaction to BaYMV. Our results indicated that rym3 is located on the short arm of chromosome 5H and flanked by RFLP markers MWG28and ABG705A at distances of 7.2 and 11.7 cM, respectively. The chromosomal configuration estimated by DNA markers around rym3 and the utilization of these molecular markers for pyramiding with the BaYMV resistance genes in barley breeding programs are discussed. Received: 24 August 1998 / Accepted: 30 January 1999<@head-com-p1a.lf>Communicated by F. Salamini  相似文献   

18.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

19.

Key message

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Abstract

Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.
  相似文献   

20.
A “resistance breaking” isolate of barley yellow mosaic virus-2 (BaYMV-2) was cloned as a cDNA and characterised. Restriction mapping and comparison with a German and a Japanese isolate of BaYMV (BaYMV-G and BaYMV-J) revealed a high level of restriction site conservation for RNAl and the majority of RNA2. However, in a box of approximately 600 nucleotides located on RNA2, striking differences in the restriction pattern could be identified. The nucleotide sequence of this box, as well as of the 3‘-terminal region of RNA1 including the coat protein coding region, and the deduced amino acid sequences were analysed. Identity at the amino acid level was between 99.3% and 92.3% in comparison with the corresponding sequences of BaYMV-G and BaYMV-J, suggesting that BaYMV-2 is closely related to BaYMV. Consequently, the classification of BaYMV-2 as a “resistance breaking” strain of BaYMV is justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号