首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the vascular wilt pathogen Fusarium oxysporum, the mitogen‐activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin‐like membrane protein Msb2 regulates a subset of Fmk1‐dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild‐type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1‐dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1‐dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall‐perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum.  相似文献   

2.
Fungal histidine kinases (HKs) are involved in osmotic and oxidative stress responses, hyphal development, fungicide sensitivity and virulence. Members of HK class III are known to signal through the high‐osmolarity glycerol mitogen‐activated protein kinase (HOG MAPK). In this study, we characterized the Shk1 gene (SS1G_12694.3), which encodes a putative class III HK, from the plant pathogen Sclerotinia sclerotiorum. Disruption of Shk1 resulted in resistance to phenylpyrrole and dicarboximide fungicides and increased sensitivity to hyperosmotic stress and H2O2‐induced oxidative stress. The Shk1 mutant showed a significant reduction in vegetative hyphal growth and was unable to produce sclerotia. Quantitative real‐time polymerase chain reaction (qRT‐PCR and glycerol determination assays showed that the expression of SsHOG1 (the last kinase of the Hog pathway) and glycerol accumulation were regulated by the Shk1 gene, but PAK (p21‐activated kinase) was not. In addition, the Shk1 mutant showed no change in virulence. All the defects were restored by genetic complementation of the Shk1 deletion mutant with the wild‐type Shk1 gene. These findings indicate that Shk1 is involved in vegetative differentiation, sclerotial formation, glycerol accumulation and adaption to hyperosmotic and oxidative stresses, and to fungicides, in S. sclerotiorum. Taken together, our results demonstrate, for the first time, the role of two‐component HKs in Sclerotinia.  相似文献   

3.
Mitogen‐activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross‐talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross‐kingdom pathogen F. oxysporum.  相似文献   

4.
F‐box proteins determine substrate specificity of the ubiquitin–proteasome system. Previous work has demonstrated that the F‐box protein Fbp1, a component of the SCFFbp1 E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen‐activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.  相似文献   

5.
Filamentous ascomycetes contain large numbers of histidine kinases (HK) that belong to eleven classes. Members of class III from different species were previously shown to be involved in osmoregulation and resistance to dicarboximide and phenylpyrrole fungicides. We have inactivated the gene encoding the single group III HK, BOS1, in the economically important plant pathogen Botrytis cinerea. BOS1 inactivation had pleiotropic effects on the fungus. Besides the expected osmosensitivity and resistance to fungicides, null mutants presented additional characteristics indicating that BOS1 is necessary for normal macroconidiation and full virulence. On standard culture media, null mutants very rarely formed conidiophores and those few conidiophores failed to produce conidia. This defect could be partially restored with 1 M sorbitol, suggesting that another BOS1-independent signal cascade may be involved in macroconidiation. The mutants were not found to be hypersensitive to various oxidative stresses but were more resistant to menadione. Finally, pathogenicity tests showed that bos1-null mutants were significantly reduced in the ability to infect host plants. Appressorium morphogenesis was not altered; however, in planta growth was severely reduced. To our knowledge, this is the first class III HK characterized as a pathogenicity factor in a plant-pathogenic ascomycete.  相似文献   

6.
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway.  相似文献   

7.
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.  相似文献   

8.
9.
Reactive oxidant species produced by phagocytes have been reported as being involved in the killing of Aspergillus fumigatus. Fungal superoxide dismutases (SODs) that detoxify superoxide anions could be putative virulence factors for this opportunistic pathogen. Four genes encoding putative Sods have been identified in the A. fumigatus genome: a cytoplasmic Cu/ZnSOD (AfSod1p), a mitochondrial MnSOD (AfSod2p), a cytoplasmic MnSOD (AfSod3p) and AfSod4 displaying a MnSOD C‐terminal domain. During growth, AfSOD1 and AfSOD2 were highly expressed in conidia whereas AfSOD3 was only strongly expressed in mycelium. AfSOD4 was weakly expressed compared with other SODs. The deletion of AfSOD4 was lethal. Δsod1 and Δsod2 mutants showed a growth inhibition at high temperature and a hypersensitivity to menadione whereas the sod3 mutant had only a slight growth delay at high temperature. Multiple mutations had only an additive effect on the phenotype. The triple sod1/sod2/sod3 mutant was characterized by a delay in conidial germination, a reduced conidial survival during storage overtime, the highest sensitivity to menadione and an increased sensitivity to killing by alveolar macrophage of immunocompetent mice. In spite of these phenotypes, no significant virulence difference was observed between the triple mutant and parental strain in experimental murine aspergillosis models in immunocompromised animals.  相似文献   

10.
Aspergillus fumigatus is the predominant airborne pathogenic fungus causing invasive aspergillosis in immunocompromised patients. During infection A. fumigatus has to adapt to oxygen‐limiting conditions in inflammatory or necrotic tissue. Previously, we identified a mitochondrial protein to be highly up‐regulated during hypoxic adaptation. Here, this protein was found to represent the novel oxidoreductase HorA. In Saccharomyces cerevisiae a homologue was shown to play a role in biosynthesis of coenzyme Q. Consistently, reduced coenzyme Q content in the generated ΔhorA mutant indicated a respective function in A. fumigatus. Since coenzyme Q is involved in cellular respiration and maintaining cellular redox homeostasis, the strain ΔhorA displayed an impaired response to both oxidative and reductive stress, a delay in germination and an accumulation of NADH. Moreover, an increased resistance against antifungal drugs was observed. All phenotypes were completely reversed by the addition of the synthetic electron carrier menadione. The deletion strain ΔhorA showed significantly attenuated virulence in two murine infection models of invasive pulmonary aspergillosis. Therefore, the biosynthesis of coenzyme Q and, particularly, the fungal‐specific protein HorA play a crucial role in virulence of A. fumigatus. Due to its absence in mammals, HorA might represent a novel therapeutic target against fungal infections.  相似文献   

11.
12.
13.
Overactivation of c‐Jun N‐terminal kinase (JNK)/c‐Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c‐Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione‐induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c‐Jun activation as death was blocked by the c‐Jun dominant negative TAM67. To further delineate the function of JNK/c‐Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione‐induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255‐10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c‐Jun dependent as it was blocked by TAM67, but independent of c‐Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β‐oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β‐oxidation also sensitized cells to death from menadione, and supplementation with the β‐oxidation substrate oleate blocked death. Components of the JNK/c‐Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c‐Jun promoting death. J. Cell. Biochem. 113: 3254–3265, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
The high‐osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high‐osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7‐1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7‐1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high‐osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7‐1 are restored by genetic complementation of the mutant with the wild‐type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea.  相似文献   

17.
Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall‐damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9‐interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co‐immunoprecipitation and affinity capture‐mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum.  相似文献   

18.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Cells possess stress‐activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号