首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
Objective: To directly ascertain the physiological roles in adipocytes of hormone‐sensitive lipase (HSL; E.C. 3.1.1.3), a multifunctional hydrolase that can mediate triacylglycerol cleavage in adipocytes. Research Methods and Procedures: We performed constitutive gene targeting of the mouse HSL gene (Lipe), subsequently studied the adipose tissue phenotype clinically and histologically, and measured lipolysis in isolated adipocytes. Results: Homozygous HSL?/? mice have no detectable HSL peptide or cholesteryl esterase activity in adipose tissue, and heterozygous mice have intermediate levels with respect to wild‐type and deficient littermates. HSL‐deficient mice have normal body weight but reduced abdominal fat mass compared with normal littermates. Histologically, both white and brown adipose tissues in HSL?/? mice show marked heterogeneity in cell size, with markedly enlarged adipocytes juxtaposed to cells of normal morphology. In isolated HSL?/? adipocytes, lipolysis is not significantly increased by β3‐adrenergic stimulation, but under basal conditions in the absence of added catecholamines, the lipolytic rate of isolated HSL?/? adipocytes is at least as high as that of cells from normal controls. Cold tolerance during a 48‐hour period at 4 °C was similar in HSL?/? mice and controls. Overnight fasting was well‐tolerated clinically by HSL?/? mice, but after fasting, liver triglyceride content was significantly lower in HSL?/? mice compared with wild‐type controls. Conclusions: In isolated fat cells, the lipolytic rate after β‐adrenergic stimulation is mainly dependent on HSL. However, the observation of a normal rate of lipolysis in unstimulated HSL?/? adipocytes suggests that HSL‐independent lipolytic pathway(s) exist in fat. Physiologically, HSL deficiency in mice has a modest effect under normal fed conditions and is compatible with normal maintenance of core body temperature during cold stress. However, the lipolytic response to overnight fasting is subnormal.  相似文献   

2.

Objective:

To assess how intrahepatic fat and insulin resistance relate to daily fructose and energy intake during short‐term overfeeding in healthy subjects.

Design and methods:

The analysis of the data collected in several studies in which fasting hepatic glucose production (HGP), hepatic insulin sensitivity index (HISI), and intrahepatocellular lipids (IHCL) had been measured after both 6‐7 days on a weight‐maintenance diet (control, C; n = 55) and 6‐7 days of overfeeding with 1.5 (F1.5, n = 7), 3 (F3, n = 17), or 4 g fructose/kg/day (F4, n = 10), with 3 g glucose/kg/day (G3, n = 11), or with 30% excess energy as saturated fat (fat30%, n = 10).

Results:

F3, F4, G3, and fat30% all significantly increased IHCL, respectively by 113 ± 86, 102 ± 115, 59 ± 92, and 90 ± 74% as compared to C (all P < 0.05). F4 and G3 increased HGP by 16 ± 10 and 8 ± 11% (both P < 0.05), and F3 and F4 significantly decreased HISI by 20 ± 22 and 19 ± 14% (both P < 0.01). In contrast, there was no significant effect of fat30% on HGP or HISI.

Conclusions:

Short‐term overfeeding with fructose or glucose decreases hepatic insulin sensitivity and increases hepatic fat content. This indicates short‐term regulation of hepatic glucose metabolism by simple carbohydrates.  相似文献   

3.
The fat‐1 gene, derived from Caenorhabditis elegans, encodes for a fatty acid n‐3 desaturase. In order to study the potential metabolic benefits of n‐3 fatty acids, independent of dietary fatty acids, we developed seven lines of fat‐1 transgenic mice (C57/BL6) controlled by the regulatory sequences of the adipocyte protein‐2 (aP2) gene for adipocyte‐specific expression (AP‐lines). We were unable to obtain homozygous fat‐1 transgenic offspring from the two highest expressing lines, suggesting that excessive expression of this enzyme may be lethal during gestation. Serum fatty acid analysis of fat‐1 transgenic mice (AP‐3) fed a high n‐6 unsaturated fat (HUSF) diet had an n‐6/n‐3 fatty acid ratio reduced by 23% (P < 0.025) and the n‐3 fatty acid eicosapentaenoic acid (EPA) concentration increased by 61% (P < 0.020). Docosahexaenoic acid (DHA) was increased by 19% (P < 0.015) in white adipose tissue. Male AP‐3‐fat‐1 line of mice had improved glucose tolerance and reduced body weight with no change in insulin sensitivity when challenged with a high‐carbohydrate (HC) diet. In contrast, the female AP‐3 mice had reduced glucose tolerance and no change in insulin sensitivity or body weight. These findings indicate that male transgenic fat‐1 mice have improved glucose tolerance likely due to increased insulin secretion while female fat‐1 mice have reduced glucose tolerance compared to wild‐type mice. Finally the inability of fat‐1 transgenic mice to generate homozygous offspring suggests that prolonged exposure to increased concentrations of n‐3 fatty acids may be detrimental to reproduction. J. Cell. Biochem. 107: 809–817, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Ethanol provides neuroprotection following ischemia/reperfusion. This study assessed ethanol's effect on hyperglycolysis and NADPH oxidase (NOX) activation. Adult, male Sprague–Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Three sets of experiments were conducted to determine ethanol's effect on (i) conferring neuroprotection by measuring infarct volume and neurological deficits 24 h post reperfusion; (ii) cerebral glucose metabolism and lactic acidosis by measuring brain and blood glucose concentrations and protein expression of glucose transporter 1 and 3 (GLUT1, GLUT3), phosphofructokinase (PFK), as well as lactic acidosis by measuring lactate dehydrogenase (LDH), and lactate; and (iii) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activation by detecting enzymatic activity and subunit expression at 3 h after reperfusion. When administered upon reperfusion, ethanol (1.5 g/kg) reduced infarct volume by 40% (p < 0.01) and neurological deficits by 48% at 24 h post reperfusion while reducing (p < 0.01) elevations in glycolytic protein expression and lactate levels during early reperfusion (3 h). Ethanol increased the reductions in cerebral glucose concentration at 3 h post reperfusion by 64% (p < 0.01) while enhancing (p < 0.01) post stroke blood glucose concentration, suggesting a reduced cellular glucose uptake and utilization. Ethanol decreased (p < 0.01) stroke‐induced NOX activation by reducing enzymatic activity and gp91phox expression by 45% and 38%, respectively. Post‐ischemia ethanol treatment exerts neuroprotection through attenuation of hyperglycolysis and associated NOX activation. Because of the lack of associated hypoglycemia and selectivity toward decreasing cerebral metabolism, further investigation of ethanol's use as a post‐stroke therapy, especially in the context of hyperglycemia, seems warranted.  相似文献   

5.
Pulses of insulin released from pancreatic β-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables β-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 β-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet β-cells expressing PKAR. These results indicate that PKM2 activity in β-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations.  相似文献   

6.
Insulin sensitivity (IS) is measured by the euglycemic–hyperinsulinemic clamp under a nonphysiological condition. Daily C‐peptide urinary excretion may be a physiological index of IS, because C‐peptide is co‐secreted with insulin as a function of nutrient intake and IS. The amount of 2H2O released from glycolytic glucose metabolism after [6,6‐2H2]‐glucose ingestion was recently proposed as a physiological measure of IS. We compared these IS surrogates to the gold standard (euglycemic–hyperinsulinemic clamp). Thirty (15 male/15 female) sedentary, nondiabetic participants (27.2 ± 4.0 (s.d.) kg/m2, 35 ± 12 years) were admitted for 3 days to our in‐patient unit. After a 10‐h fast, they received 60 g of glucose and 15 g of [6,6‐2H2]‐glucose. Before glucose ingestion and hourly thereafter for 4 h, plasma glucose and insulin concentrations, and plasma deuterium enrichment were determined. Plasma 2H2O production divided by insulin response was used as the glycolytic index. On day 2, subjects spent 23 h in a metabolic chamber (eucaloric diet, 50% carbohydrate, 30% fat). Urinary C‐peptide excretion was divided by energy intake yielding the C‐peptide to energy intake ratio (CPEP/EI). After leaving the chamber (day 3, 10‐h fast), IS was measured by a 2‐h clamp (120 mU/m2/min). Average IS (clamp) was 7.3 ± 2.6 mg glucose/kg estimated metabolic body size/min (range: 3.6–13.2). These values were inversely correlated with CPEP/EI (r = ?0.62; P < 0.01) and positively with the glycolytic rate (r = 0.60; P < 0.01). In nondiabetic subjects, two novel estimates of IS—daily urinary C‐peptide urinary excretion and glycolytic rate during an oral glucose tolerance test —were related to IS by a clamp.  相似文献   

7.
Objective: Sustained exposure to lipids is deleterious for pancreatic islet function. This could be mediated through increased pancreatic fat following increased dietary fat and in obesity, which has implications for the onset of type 2 diabetes. The aims of this study were to determine changes in extent and composition of pancreatic, hepatic, and visceral fat in mice fed a high‐fat diet (HFD, 40% by weight) compared with a control diet (5% fat) of similar fatty acid composition, and to compare composition and extent of pancreatic fat in human type 2 diabetes. Methods and Procedures: Mice were fed HFD for 3 or 15 weeks. Human postmortem pancreas was examined from subjects with type 2 diabetes (n = 9) and controls (n = 7). Tissue lipid content and composition were determined by gas chromatography and pancreatic adipocyte infiltration quantified by morphometry. Results: Pancreatic triacylglycerol (TG) content was 20× greater (P < 0.05) in HFD mice and there were more pancreatic perilipin‐positive adipocytes compared with controls after 15 weeks. The proportions of 18:1n ?9 and 18:2n ?6 in pancreatic TG and the 20:4n ?6/18:2n ?6 ratio in phospholipids, were higher (both P < 0.05) after HFD compared with controls. Human pancreatic TG content was correlated with the proportion of pancreatic perilipin‐positive adipocytes (r = 0.64, P < 0.05) and associated with unsaturated fatty acid enrichment (P < 0.05). Discussion: Adipocyte infiltration in pancreatic exocrine tissue is associated with high‐fat feeding in mice and pancreatic TG content in humans. This alters the fatty acid milieu of the islet which could contribute to islet dysfunction.  相似文献   

8.
Objective: We showed glucose‐dependent lipolytic oscillations in adipocytes that are modulated by free fatty acids (FFAs). We hypothesized that the oscillations are driven by oscillatory glucose metabolism that leads to oscillatory formation of α‐glycerophosphate (α‐GP), oscillatory removal of long‐chain coenzyme A (LC‐CoA) by α‐GP to form triglycerides, and oscillatory relief of LC‐CoA inhibition of triglyceride lipases. This study examined the effect of insulin on this hypothesis. Research Methods and Procedures: Samples were collected every minute from perifused rat adipocytes during the basal state followed by insulin (±glucose) or isoproterenol (±insulin; n = 4 each). Results: Insulin caused a significant increase in glycerol release (18%), with a concomitant significant decrease in FFA release (38%). Without glucose, insulin had no effect on glycerol release while still decreasing FFA release (35%). Insulin (5 μU/mL) attenuated the response of lipolysis to isoproterenol (~3‐fold increase with isoproterenol vs. 2‐fold increase with insulin + isoproterenol). However, 1 mU/mL insulin amplified the lipolytic response (~5‐fold increase in glycerol release with insulin + isoproterenol), with a concomitant increase in FFA reesterification (no increase in FFA release compared with isoproterenol alone). Discussion: We interpret these results to be due to insulin's ability to increase glucose uptake and conversion to α‐GP, thus removing LC‐CoA inhibition of triglyceride lipases. While the physiological importance of lipolytic oscillations remains to be determined, we hypothesize that such an oscillation may play an important role in the delivery of FFAs to the liver, β cells, and other tissues.  相似文献   

9.
Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose‐6‐phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+] ratios whereas the effect of ZWF1 overexpression alone in the wild‐type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl‐CoA C‐acetyltransferase (ERG10), truncated HMG‐CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L–1 of amorphadiene (3.7‐fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.  相似文献   

10.
Objective: This study was conducted to evaluate the association of total and central adiposity with serum cardiovascular disease (CVD) risk factors in lean and obese Portuguese children and adolescents. Research Methods and Procedures: A total of 87 girls (13.2 ± 1.6 years old, 29.9 ± 6.4% body fat [mean ± SD]) and 72 boys (13.2 ± 1.6 years old, 20.8 ± 9.9% body fat) volunteered for the study. Whole‐body composition and fat distribution, from DXA and anthropometry, and serum lipids, lipoproteins, and apolipoproteins were evaluated. Results: The sum of three trunk skinfolds (STS) was highly correlated with total trunk fat mass measured by DXA (p < 0.001). Body mass index, DXA‐measured percentage of body fat, trunk fat mass, STS, and the waist‐to‐height ratio were generally found to be associated with triacylglycerol, the ratio of total cholesterol (TC) to high density lipoprotein‐cholesterol (HDL‐C), low density lipoprotein‐cholesterol (LDL‐C), and apolipoprotein B levels, (significant age‐adjusted r between 0.16 and 0.27, p < 0.05). Body mass index, STS, and the waist circumference were also associated with HDL‐C (p < 0.05), whereas no body composition variable significantly correlated with TC or apolipoproteins A‐I. The STS was significantly correlated with HDL‐C (p < 0.01), TC/HDL‐C (p < 0.05), and apolipoproteins A‐I (p < 0.05) independently of whole‐body fatness. Obese subjects (n = 73) had higher TC, LDL‐C, TC/HDL‐C, and apolipoprotein B than did non‐obese subjects (n = 86), and significant associations between central adiposity and some lipid variables (triacylglycerol and HDL‐C) were found in obese children and adolescents that were not present in leaner individuals. Discussion: DXA‐ and anthropometry‐based whole‐body and central fat measures are associated with serum CVD risk factors in Portuguese boys and girls. Obese children and adolescents have a poorer lipid profile than do their leaner counterparts. Trunk skinfolds, which are easy to obtain even in large samples, predict CVD risk factors to the same extent as DXA‐based variables, in some cases, independently of total fatness.  相似文献   

11.
Šmerc A  Sodja E  Legiša M 《PloS one》2011,6(5):e19645

Background

Human cancers consume larger amounts of glucose compared to normal tissues with most being converted and excreted as lactate despite abundant oxygen availability (Warburg effect). The underlying higher rate of glycolysis is therefore at the root of tumor formation and growth. Normal control of glycolytic allosteric enzymes appears impaired in tumors; however, the phenomenon has not been fully resolved.

Methodology/Principal Findings

In the present paper, we show evidence that the native 85-kDa 6-phosphofructo-1-kinase (PFK1), a key regulatory enzyme of glycolysis that is normally under the control of feedback inhibition, undergoes posttranslational modification. After proteolytic cleavage of the C-terminal portion of the enzyme, an active, shorter 47-kDa fragment was formed that was insensitive to citrate and ATP inhibition. In tumorigenic cell lines, only the short fragments but not the native 85-kDa PFK1 were detected by immunoblotting. Similar fragments were detected also in a tumor tissue that developed in mice after the subcutaneous infection with tumorigenic B16-F10 cells. Based on limited proteolytic digestion of the rabbit muscle PFK-M, an active citrate inhibition-resistant shorter form was obtained, indicating that a single posttranslational modification step was possible. The exact molecular masses of the active shorter PFK1 fragments were determined by inserting the truncated genes constructed from human muscle PFK1 cDNA into a pfk null E. coli strain. Two E. coli transformants encoding for the modified PFK1s of 45,551 Da and 47,835 Da grew in glucose medium. The insertion of modified truncated human pfkM genes also stimulated glucose consumption and lactate excretion in stable transfectants of non-tumorigenic human HEK cell, suggesting the important role of shorter PFK1 fragments in enhancing glycolytic flux.

Conclusions/Significance

Posttranslational modification of PFK1 enzyme might be the pivotal factor of deregulated glycolytic flux in tumors that in combination with altered signaling mechanisms essentially supports fast proliferation of cancer cells.  相似文献   

12.
13.
Objective: Obesity is thought to result from poor diet and insufficient exercise. An additional factor may be endocrine‐disrupting environmental chemicals that contaminate the air, water, and food supply. We tested the hypothesis that a class of lipid‐soluble flame retardant chemicals known to accumulate in adipose tissue, polybrominated diphenyl ethers (PBDEs), disrupts insulin and isoproterenol sensitivity of isolated rat adipocytes. Research Methods and Procedures: Six‐week‐old Sprague‐Dawley rats were gavaged daily with 14 mg/kg body weight (BW) pentabrominated diphenyl ether (penta‐BDE) in corn oil (n = 24) or corn oil alone (n = 24). At 2 and 4 weeks of treatment, epididymal fat pad adipocytes were isolated, and isoproterenol‐stimulated lipolysis, insulin‐stimulated glucose oxidation, and adipocyte size were measured. Results: There was no alteration in adipocyte metabolism after 2 weeks of in vivo penta‐BDE treatment, but after 4 weeks of treatment, adipocytes averaged a 30% increase in isoproterenol‐stimulated lipolysis and a 59% decrease in insulin‐stimulated glucose oxidation, compared with control. There were no differences in average rat BW and adipocyte size between treated and control rats, but plasma total thyroxine level in 2‐ and 4‐week treated rats was 30% of control. Discussion: Daily exposure of rats to 14 mg/kg BW penta‐BDE for 4 weeks has no effect on animal or adipocyte size but significantly alters insulin and isoproterenol‐stimulated metabolism of isolated adipocytes. These alterations, hallmark features of metabolic obesity, suggest the need for further research on the contribution of lipid‐soluble, endocrine‐disrupting environmental chemicals to the obesity epidemic.  相似文献   

14.
The size of adipocytes influences their function suggesting a differential responsiveness to intervention. We hypothesized that weight loss in patients with type 2 diabetes mellitus (T2DM) predominantly decreases the size of large and very‐large adipocyte subfractions in parallel with beneficial changes in serum adipokines and improved insulin sensitivity. A total of 44 volunteers from the Look Action for Health in Diabetes trial, who lost weight after 1‐year of intense lifestyle intervention, were included. Insulin sensitivity (hyperinsulinemic–euglycemic clamp), size of subcutaneous abdominal adipocytes (osmium fixation), and selected serum adipokines were measured. A 13% weight loss was accompanied by 46% improvement in insulin sensitivity (increased glucose disposal rate from 5.9 ± 2.2 to 8.6 ± 2.7 mg/min/kg fat‐free mass, P < 0.05) in parallel with a 36% increase in plasma adiponectin concentration (6.1 ± 3.1 to 8.3 ± 3.9 µg/ml, P < 0.05], but no changes in the proinflammatory cytokines interleukin‐6 and tumor necrosis factor‐α. Change in adiponectin correlated with changes in glucose disposal rate (r = 0.34, P < 0.05). Mean adipocyte size decreased (0.84 ± 0.25 to 0.64 ± 0.23 µl, P < 0.05), mainly due to changes in the large adipocyte subfraction (size 0.75–0.44 µl, relative number 19–26%; P < 0.05). Our data suggest that change in the large adipocyte subfraction may contribute to the improvement in insulin sensitivity via an increase in serum adiponectin. Such a relationship, which does not imply cause and effect, could not be obtained by measuring only mean adipocyte size. These data provide support for the measures of adipocyte size distribution in concert with in vitro adipokine secretion and lipolysis in future studies.  相似文献   

15.
Objective: To investigate AGT secretion in cultured adipocytes from obese patients and its relationship with obesity‐related phenotypes, blood pressure, and the M235T polymorphism in the AGT gene. Research Methods and Procedures: Measurements, including anthropometry, body composition (DXA), and blood pressure, were performed in 61 overweight or obese women (BMI: 28 to 68 kg/m2). A subcutaneous abdominal adipose tissue biopsy was used for adipocyte size determination and quantification of AGT secretion in the medium of cultured adipocytes. AGT M235T genotype was determined using polymerase chain reaction‐restriction fragment length polymorphism. Results: Adipose secretion of the AGT protein (range, 140 to 2575 ng/106 cells/24 h) was not significantly correlated with BMI, body fat, or blood pressure and did not vary according to the M235T polymorphism in the AGT gene. However, the AGT M235T polymorphism was associated with adipocyte size (111.6 ± 2.8, 108.8 ± 1.9, 118.2 ± 2.6 μm in MM, MT, and TT genotypes, respectively; p < 0.01) after adjustment for age and fat mass. An association between the AGT M235T polymorphism and adipocyte size (p < 0.02 adjusted for sex, age, and BMI) was found in another independent sample of 106 obese subjects (sex ratio, M/F 16/90; BMI, 29 to 70 kg/m2). Discussion: In cultured adipocytes from obese subjects, AGT secretion was not associated with body fat phenotypes, blood pressure, or fat cell size. However, results from two independent studies suggest an association between the AGT M235T polymorphism and adipocyte size.  相似文献   

16.
Summary The mycelial sugar composition and changes in specific activities of phosphofructokinase (PFK) and glucose-6-phosphate dehydrogenase, the key enzymes of the glycolytic and pentose-phosphate pathway of glucose catabolism, were followed throughout submerged fermentation of a high-yielding Claviceps purpurea L17 strain. Experimental data indicate that the pentose-phosphate pathway in glucose breakdown prevails during the vegetative phase of fermentation, the share of the glycolytic pathway becoming more pronounced during alkaloid synthesis. Both enzymes exhibit hyperbolic saturation kinetics, which is not usual for the PFK of eukaryotes. Offprint requests to: V. Gaberc-Porekar  相似文献   

17.
Objective: Comparison of ex‐vivo soft tissue measurements using the GE/Lunar pencil (DPX‐L; GE/Lunar Co., Madison, WI) and fan beam (Prodigy dual‐energy X‐ray absorptiometers (DXA) GE/Lunar Co.). Research Methods and Procedures: Intra‐instrument reliability was assessed by repeatedly scanning soft tissue phantoms for lean tissue (water) and fat tissue (methanol) using one DPX‐L and two identical Prodigy DXAs at fast, medium, and slow scan modes. For each machine, 10 scans of each phantom were performed at each scan speed. The number of scans per instrument totaled 60. Data were analyzed using ANOVA to ascertain whether scan speed affected the intra‐instrument reliability and to test whether soft tissue measurements differed among instruments. Percentage fat (phantom density) was the outcome variable. Results: Intra‐instrument reliability, expressed as coefficient of variation, ranged between 0.7% and 5.2% for the DPX‐L and 0.4% and 4.5% for the Prodigy, with the lowest coefficients of variation observed when scanning the fat tissue phantom. Scan speed also affected the intra‐instrument reliability (p < 0.01). Furthermore, differences in the measurement of percentage body fat for both the lean and fat tissue phantoms were observed among all three absorptiometers (all p < 0.01). After adjusting for scan speed, differences persisted for all three instruments. Discussion: Intra‐ and inter‐instrument reliability of DXA machines, even those from the same manufacturer, remains unpredictable. Thus, when measuring body composition using DXA, it is important to consider that even in the absence of measurement bias, the use of different DXA machines, particularly when using a variety of speed settings, will increase the residual error around the true value.  相似文献   

18.

Objective:

Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by BMI and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study).

Design and Methods:

Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules, and hemostatic factors were determined at baseline and after 12 weeks of four dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA), and two low fat high complex carbohydrate (LFHCC) diets, one supplemented with long chain n‐3 polyunsaturated fatty acids (LC n‐3 PUFAs)).

Results:

About 39 and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (≥30 kg/m2) and BF% (≥25% (men) and ≥35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as nonobese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more proinflammatory (higher C reactive protein (CRP) and leptin), prothrombotic (higher plasminogen activator inhibitor‐1 (PAI‐1)), proatherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA‐IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumor necrosis factor‐α (TNF‐α) concentrations were lower post‐intervention in NOO individuals compared with OO subjects (P < 0.001).

Conclusions:

In conclusion, assessing BF% and BMI as part of a metabotype may help to identify individuals at greater cardiometabolic risk than BMI alone.  相似文献   

19.
The β2‐adrenergic receptor (ADRB2) mediates obesity, cardiorespiratory fitness, and insulin resistance. We examined the hypothesis that ADRB2 Arg16Gly‐Gln27Glu haplotype is associated with body composition, glucose tolerance, and insulin sensitivity in obese, postmenopausal women. Obese (>35% body fat), postmenopausal (age 45–75 years) women (n = 123) underwent genotyping, dual‐energy X‐ray absorptiometry, and computed tomography scans, exercise testing (VO2max), 2‐h oral glucose tolerance tests (OGTTs), and hyperinsulinemic‐euglycemic clamps (80 mU/m2/min). Analysis of covariance (ANCOVA) tested for differences among haplotypes, with race, % body fat, and VO2max as covariates. We found that ADRB2 haplotype was independently associated with % body fat, abdominal fat distribution, VO2max, insulin sensitivity (M/ΔInsulin), and glucose tolerance (ANOVA, P < 0.05 for all). Women homozygous for Gly16–Gln27 haplotype had the highest % body fat (52.7 ± 1.9%), high abdominal fat, low M/ΔInsulin (0.49 ± 0.08 mg/kg/min/pmol/l/102), and impaired glucose tolerance (IGT) during an OGTT (G120 = 10.2 ± 0.9 mmol/l). Women homozygous for Gly16–Glu27 haplotype also had low M/ΔInsulin (0.51 ± 0.05 mg/kg/min/pmol/l/102) and IGT (G120 = 8.2 ± 0.7 mmol/l). Subjects with Arg16–Gln27/Gly16–Gln27 haplotype combination had the highest VO2max (1.84 ± 0.07 l/min) and M/ΔInsulin (0.7 ± 0.04 mg/kg/min/pmol/l/102), and normal glucose tolerance (G120 = 6.4 ± 0.4 mmol/l), despite being obese. These data show associations of the ADRB2 Arg16Gly‐Gln27Glu haplotype with VO2max and body composition, and an independent association with glucose metabolism, which persists after controlling for body composition and fitness. This suggests that ADRB2 haplotypes may mediate insulin action, glucose tolerance, and potentially risk for type 2 diabetes mellitus (T2DM) in obese, postmenopausal women.  相似文献   

20.
Objective: To determine the effects of weight loss (WL) alone and combined with aerobic exercise on visceral adipose tissue (VAT), intramuscular fat, insulin‐stimulated glucose uptake, and the rate of decline in free fatty acid (FFA) concentrations during hyperinsulinemia. Research Methods and Procedures: We studied 33 sedentary, obese (BMI = 32 ± 1 kg/m2) postmenopausal women who completed a 6‐month (three times per week) program of either WL alone (n = 16) or WL + aerobic exercise (AEX) (n = 17). Glucose utilization (M) was measured during a 3‐hour hyperinsulinemic‐euglycemic clamp (40 mU/m2 per minute). M/I, the amount of glucose metabolized per unit of plasma insulin (I), was used as an index of insulin sensitivity. Results: Body weight, total fat mass, and percentage fat decreased similarly in both groups (p < 0.01). VAT, subcutaneous abdominal adipose tissue, mid‐thigh subcutaneous fat, and intramuscular fat decreased to a similar extent in both groups and between 14% and 27% after WL and WL+AEX (p < 0.05). WL alone did not change M or M/I; however, M and M/I increased 15% and 21% after WL+AEX (p < 0.05). Fasting concentrations and rate of decline of FFA did not change in either group. In stepwise regression models to determine the independent predictors of changes in M and M/I, the change in VAT was the single independent predictor of M (r2 = 0.30) and M/I (r2 = 0.33). Discussion: Intramuscular fat decreases similarly with 6 months of moderate WL alone or with aerobic exercise in postmenopausal women. In contrast, only WL combined with exercise results in increased glucose utilization and insulin sensitivity. These findings should be validated in a larger population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号