首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
核孔复合物(NPC)是一个巨型分子复合物,相对分子质量约125×106。脊椎动物的NPC由大约30种蛋白质组成,这些蛋白质的序列大多具有FG(苯丙氨酸-甘氨酸)重复序列。NPC锚定于双层核膜上,并且是物质跨核膜运输的惟一通道,它可快速介导小分子物质的被动运输以及大分子物质的主动运输过程。虽然NPC具有较大的相对分子质量和复杂的结构,但它可在细胞分裂过程中分离并重新组装。生物大分子经NPC的跨核膜运输直接影响真核细胞的生长、增殖、分化、发育等多种生命活动。本文重点介绍NPC的结构、组装及其功能特点。  相似文献   

2.
Nuclear pore complexes (NPCs) mediate cargo traffic between the nucleus and the cytoplasm of eukaryotic cells. Nuclear transport receptors (NTRs) carry cargos through NPCs by transiently binding to phenylalanine‐glycine (FG) repeats on intrinsically disordered polypeptides decorating the NPCs. Major impediments to understand the transport mechanism are the thousands of FG binding sites on each NPC, whose spatial distribution is unknown, and multiple binding sites per NTR, which leads to multivalent interactions. Using single molecule fluorescence microscopy, we show that multiple NTR molecules are required for efficient transport of a large cargo, while a single NTR promotes binding to the NPC but not transport. Particle trajectories and theoretical modelling reveal a crucial role for multivalent NTR interactions with the FG network and indicate a non‐uniform FG repeat distribution. A quantitative model is developed wherein the cytoplasmic side of the pore is characterized by a low effective concentration of free FG repeats and a weak FG‐NTR affinity, and the centrally located dense permeability barrier is overcome by multivalent interactions, which provide the affinity necessary to permeate the barrier.  相似文献   

3.
An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport.  相似文献   

4.
Translocation through the nuclear pore complex   总被引:3,自引:0,他引:3  
The nuclear transport field has completed a decade of fast-paced research dominated by the discovery of transport signals, receptors, and regulators. What might be considered the Holy Grail of nuclear transport – the physical basis of translocation through the nuclear pore – is now under close scrutiny. Recent publications describe structural and biochemical approaches that help address key aspects of the translocation mechanism. These studies have led to the affinity gradient, Brownian affinity gate and selective phase models of translocation.  相似文献   

5.
The central features of nuclear import have been conserved during evolution. In yeast the nuclear accumulation of proteins follows the same selective and active transport mechanisms known from higher eukaryotes. Yeast nuclear proteins contain nuclear localization sequences (NLS) which are presumably recognized by receptors in the cytoplasm and the nuclear envelope. Subsequent to this recognition step, nuclear proteins are translocated into the nucleus via the nuclear pore complexes. The structure of the yeast nuclear pore complex resembles that of higher eukaryotes. Recently, the first putative components of the yeast nuclear import machinery have been cloned and sequenced. The genetically amenable yeast system allows for an efficient structural and functional analysis of these components. Due to the evolutionary conservation potential insights into the nuclear import mechanisms in yeast can be transferred to higher eukaryotes. Thus, yeast can be considered as a eukaryotic model system to study nuclear transport.  相似文献   

6.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.  相似文献   

7.
Nuclear transport carriers interact with proteins of the nuclear pore complex (NPC) to transport their cargo across the nuclear envelope. One such carrier is nuclear transport factor 2 (NTF2), whose import cargo is the small GTPase Ran. A domain highly homologous to the small NTF2 protein (14kDa) is also found in a number of additional proteins, which together make up the NTF2 domain containing superfamily of proteins. Using structural, computational and biochemical analysis we have identified a functional site that is present throughout this superfamily, and our results indicate that this site functions as an NPC binding site in NTF2. Previously we showed that a D23A mutant of NTF2 exhibits increased affinity for the NPC. The mechanism of this mutation, however, was unknown as this region of NTF2 had not been implicated in binding to NPC proteins. Here we show that the D23A mutation in NTF2 does not result in gross structural changes affecting other known NPC binding sites. Instead, the D23 residue is located in an evolutionarily important region in the NTF2 domain containing superfamily, that in NTF2, is involved in binding to the NPC.  相似文献   

8.
In vertebrates, the nuclear pore complex (NPC), the gate for transport of macromolecules between the nucleus and the cytoplasm, consists of approximately 30 different nucleoporins (Nups). The Nup and SUMO E3-ligase Nup358/RanBP2 are the major components of the cytoplasmic filaments of the NPC. In this study, we perform a structure-function analysis of Nup358 and describe its role in nuclear import of specific proteins. In a screen for nuclear proteins that accumulate in the cytoplasm upon Nup358 depletion, we identified proteins that were able to interact with Nup358 in a receptor-independent manner. These included the importin α/β-cargo DBC-1 (deleted in breast cancer 1) and DMAP-1 (DNA methyltransferase 1 associated protein 1). Strikingly, a short N-terminal fragment of Nup358 was sufficient to promote import of DBC-1, whereas DMAP-1 required a larger portion of Nup358 for stimulated import. Neither the interaction of RanGAP with Nup358 nor its SUMO-E3 ligase activity was required for nuclear import of all tested cargos. Together, Nup358 functions as a cargo- and receptor-specific assembly platform, increasing the efficiency of nuclear import of proteins through various mechanisms.  相似文献   

9.
The objective of this investigation was to characterize intranuclear accumulation of oligonucleotides and their adducts with non-karyophilic compounds in cultured animal cells and thus to present a model system for nucleic acid-mediated nuclear import. In digitonin-permeabilized cells, nuclear uptake of 3′-FITC-labeled, single-stranded 25-mer oligodeoxyribonucleotides was independent of added cytosolic protein, largely energy-dependent, inhibitable by wheat germ agglutinin but not by N-ethylmaleimide, and a function of their base composition. When coupled to FITC-labeled streptavidin or streptavidin-bovine serum albumin conjugates, the oligonucleotides delivered the proteins to the nuclear interior with rates roughly proportional to their karyophilicity as free molecules. Transport activity was also demonstrated for single-stranded oligoribonucleotides. The transport was energy-dependent, inhibited by GMP-PNP and wheat germ agglutinin, but unaffected by N-ethylmaleimide. Nuclear import of oligo(dG)25/protein adducts needed 3 to 4 oligonucleotide signals per complex and the signal had to be at least 15 nucleotides long. Micro-injection experiments showed that the results obtained with digitonin-permeabilized cells are not artifacts of a quasi-intact cellular system. These data were confirmed by electron microscopy employing complexes of oligodeoxyribonucleotides with streptavidin-peroxidase-bovine serum albumin-1 nm gold. In permeabilized cells, the complexes docked to the cytoplasmic face of the nuclear pore complexes, were translocated through the central pore channel and accumulated in large quantities in the nuclear baskets before they were released into the nucleoplasm. These results demonstrate that nuclear uptake of oligonucleotides and their complexes is an active process mediated by nuclear pore complexes, which, at least regarding its cytoplasmic component, is different from the pathway requiring classical nuclear localization signals.  相似文献   

10.
11.
The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo‐cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation‐promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin‐mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self‐healing’ properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs.  相似文献   

12.
《Cell》2022,185(2):361-378.e25
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

13.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

14.
15.
Nuclear actin and actin-related proteins (Arps) are integral components of various chromatin-remodelling complexes. Actin in such nuclear assemblies does not form filaments but associates in defined complexes, for instance with Arp4 and Arp8 in the INO80 remodeller. To understand the relationship between nuclear actin and its associated Arps and to test the possibility that Arp4 and Arp8 help maintain actin in defined states, we structurally analysed Arp4 and Arp8 from Saccharomyces cerevisiae and tested their biochemical effects on actin assembly and disassembly. The solution structures of isolated Arp4 and Arp8 indicate them to be monomeric and the crystal structure of ATP-Arp4 reveals several differences to actin that explain why Arp4 does not form filaments itself. Remarkably, Arp4, assisted by Arp8, influences actin polymerization in vitro and is able to depolymerize actin filaments. Arp4 likely forms a complex with monomeric actin via the barbed end. Our data thus help explaining how nuclear actin is held in a discrete complex within the INO80 chromatin remodeller.  相似文献   

16.
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.  相似文献   

17.
18.
S100 proteins are a subfamily of the EF-hand type calcium sensing proteins, the exact biological functions of which have not been clarified yet. In this work, we have identified Cyclophilin 40 (CyP40) and FKBP52 (called immunophilins) as novel targets of S100 proteins. These immunophilins contain a tetratricopeptide repeat (TPR) domain for Hsp90 binding. Using glutathione-S transferase pull-down assays and immunoprecipitation, we have demonstrated that S100A1 and S100A2 specifically interact with the TPR domains of FKBP52 and CyP40 in a Ca2+-dependent manner, and lead to inhibition of the CyP40-Hsp90 and FKBP52-Hsp90 interactions. These findings have suggested that the Ca2+/S100 proteins are TPR-targeting regulators of the immunophilins-Hsp90 complex formations.

Structured summary

MINT-7710442: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710192: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710412: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710374: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710452: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710387: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710279: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710224: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710464: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710249: Cyp40 (uniprotkb:P26882) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710422: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710348: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710208: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710265: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710361: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710476: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710316: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A1 (uniprotkb:P35467) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710432: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710488: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710329: S100A6 (uniprotkb:P14069) physically interacts (MI:0914) with FKBP52 (uniprotkb:P30416) and Cyp40 (uniprotkb:Q08752) by anti bait coimmunoprecipitation (MI:0006)MINT-7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

19.
20.
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets.This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号