首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of mating partners an individual has within a population is a crucial parameter in sex allocation theory for simultaneous hermaphrodites because it is predicted to be one of the main parameters influencing sex allocation. However, little is known about the factors that determine the number of mates in simultaneous hermaphrodites. Furthermore, in order to understand the benefits obtained by resource allocation into the male function it is important to identify the factors that predict sperm‐transfer success, i.e. the number of sperm a donor manages to store in a mate. In this study we experimentally tested how social group size (i.e. the number of all potential mates within a population) and density affect the number of mates and sperm‐transfer success in the outcrossing hermaphroditic flatworm Macrostomum lignano. In addition, we assessed whether these parameters covary with morphological traits, such as body size, testis size and genital morphology. For this we used a method, which allows tracking sperm of a labelled donor in an unlabelled mate. We found considerable variation in the number of mates and sperm‐transfer success between individuals. The number of mates increased with social group size, and was higher in worms with larger testes, but there was no effect of density. Similarly, sperm‐transfer success was affected by social group size and testis size, but in addition this parameter was influenced by genital morphology. Our study demonstrates for the first time that the social context and the morphology of sperm donors are important predictors of the number of mates and sperm‐transfer success in a simultaneous hermaphrodite. Based on these findings, we hypothesize that sex allocation influences the mating behaviour and outcome of sperm competition.  相似文献   

2.
The insects with the longest proboscis in relation to body length are the nectar‐feeding Nemestrinidae. These flies represent important pollinators of the South African flora and feature adaptations to particularly long‐tubed flowers. The present study examined the morphology of the extremely long and slender mouthparts of Nemestrinidae for the first time. The heavily sclerotized tubular proboscis of flies from the genus Prosoeca is highly variable in length. It measures 20–47 mm in length and may exceed double the body length in some individuals. Proximally, the proboscis consists of the labrum–epipharynx unit, the laciniae, the hypopharynx, and the labium. The distal half is composed of the prementum of the labium, which solely forms the food tube. In adaptation to long‐tubed and narrow flowers, the prementum is extremely elongated, bearing the short apical labella that appear only to be able to spread apart slightly during nectar uptake. Moving the proboscis from resting position under the body to a vertical feeding position is accomplished in particular by the movements of the laciniae, which function as a lever arm. Comparisons with the mouthparts of other flower visiting flies provide insights into adaptations to nectar‐feeding from long‐tubed flowers. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

3.
Most Old World mice and rats, subfamily Murinae, have a spermatozoon with an apical hook, a long tail and, as seen typically in eutherian mammals, a bilaterally flattened head. Dramatically different from this are the sperm of the Greater Bandicoot Rat, Bandicota indica. Here, we ask the question has the structure of the sperm head co‐evolved with that of the egg coat, the zona pellucida? For this, we first summarise the morphological features of the spermatozoon of B. indica that may relate to zona pellucida penetration at the time of fertilisation, and we confirm that the sperm head is generally round, not bilaterally flattened, in profile and has a huge acrosome. We then show that the zona pellucida around oocytes in tertiary follicles also differs from that of the other murine rodents in being only about 4 μm thick and, as demonstrated by lectin staining, has an unusual abundance of alpha‐L‐fucose. These findings indicate that both the male and female gametes of this South‐East Asian murine rodent are highly divergent in their structural organisation. One of the functional implications of this probably relates to sperm–zona interactions and the release of acrosomal enzymes that probably facilitate penetration by digestion of the zona matrix at the time of fertilisation.  相似文献   

4.
Abstract Palaeobiologists frequently attempt to identify examples of co‐evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co‐evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co‐evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co‐evolving groups is necessary to establish whether co‐evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co‐occur in dinosaur‐bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co‐evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to poor sampling in the Turonian–Santonian interval. Stegosauria shows a significant negative correlation with flowering plants and a significant positive correlation with the nonflowering cycadophytes (cycads, Bennettitales). This interesting pattern is worthy of further investigation, and it reflects the decline of both stegosaurs and cycadophytes during the Early Cretaceous.  相似文献   

5.
Sexual selection operates through consecutive episodes of selection that ultimately contribute to the observed variance in reproductive success between individuals. Understanding the relative importance of these episodes is challenging, particularly because the relevant postcopulatory fitness components are often difficult to assess. Here, we investigate different episodes of sexual selection on the male sex function, by assessing how (precopulatory) mating success, and (postcopulatory) sperm‐transfer efficiency and sperm‐fertilizing efficiency contribute to male reproductive success. Specifically, we used a transgenic line of the transparent flatworm, Macrostomum lignano, which expresses green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking and paternity analysis. We found that a large proportion of variance in male reproductive success arose from the postcopulatory episodes. Moreover, we also quantified selection differentials on 10 morphological traits. Testis size and seminal vesicle size showed significant positive selection differentials, which were mainly due to selection on sperm‐transfer efficiency. Overall, our results demonstrate that male reproductive success in M. lignano is not primarily limited by the number of matings achieved, but rather by the ability to convert matings into successful fertilizations, which is facilitated by producing many sperm.  相似文献   

6.
Understanding the conformational propensities of proteins is key to solving many problems in structural biology and biophysics. The co‐variation of pairs of mutations contained in multiple sequence alignments of protein families can be used to build a Potts Hamiltonian model of the sequence patterns which accurately predicts structural contacts. This observation paves the way to develop deeper connections between evolutionary fitness landscapes of entire protein families and the corresponding free energy landscapes which determine the conformational propensities of individual proteins. Using statistical energies determined from the Potts model and an alignment of 2896 PDB structures, we predict the propensity for particular kinase family proteins to assume a “DFG‐out” conformation implicated in the susceptibility of some kinases to type‐II inhibitors, and validate the predictions by comparison with the observed structural propensities of the corresponding proteins and experimental binding affinity data. We decompose the statistical energies to investigate which interactions contribute the most to the conformational preference for particular sequences and the corresponding proteins. We find that interactions involving the activation loop and the C‐helix and HRD motif are primarily responsible for stabilizing the DFG‐in state. This work illustrates how structural free energy landscapes and fitness landscapes of proteins can be used in an integrated way, and in the context of kinase family proteins, can potentially impact therapeutic design strategies.  相似文献   

7.
It is now widely recognized that sexual selection has been important in the rapid and divergent evolution of male genital morphology. However, distinguishing among putative mechanisms of sexual selection acting on male genital morphology represents a considerable challenge. Although there is growing evidence that variation in the size and/or shape of male genital structures can determine a male's success in gaining fertilizations, our knowledge of the functional morphology of male genitalia remains limited. Here we examine the functional morphology of genital sclerites that are known to influence paternity in the dung beetle Onthophagus taurus . We show that three of the sclerites form a functionally integrated unit that generates the tubular-shaped spermatophore and delivers its opening to the female's spermathecal duct. A fourth sclerite acts as a holdfast device during copulation. Our observations shed light on the mechanism by which these sclerites influence a male's paternity, and their patterns of phenotypic and genetic (co)variation.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 257–266.  相似文献   

8.
9.
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.  相似文献   

10.
Dermaptera (earwigs) is a relatively small polyneopteran order with approximately 2200 described species. They are characterized by a pair of forceps, which are hardened, unsegmented cerci at the caudal end of the abdomen. In most species, males have more exaggerated forceps than females, indicating an effect of sexual selection on them. Earwigs also exhibit astonishing diversity in the number, laterality and size of both male and female genital components. This characteristic has promoted the study of postcopulatory sexual selection in several representative species. Here, previous studies of earwigs that examined pre‐ and postcopulatory sexual selection are reviewed in detail. Related topics included here are sexually antagonistic coevolution, evolution of laterally asymmetrical morphologies, and developmental aspects of intra‐sexually dimorphic traits. A new terminology system for male genitalia is also proposed.  相似文献   

11.
12.
Antagonistic host–parasite interactions are rarely considered from an ecological perspective of the parasite. We used a blood‐feeding ectoparasite of boreal cervids, the deer ked (Lipoptena cervi L., Hippoboscidae), to study host‐dependent variation in a parasite's ability to cope with an abiotic environment during the free‐living stage(s) in two allopatric Fennoscandian populations. We found that a strongly host‐specific deer ked population in eastern Fennoscandia, exploiting only moose (Alces alces), produced the largest offspring that were the most cold‐tolerant and emerged the earliest as adults, when compared with the western Fennoscandian population that exploited two hosts efficiently. Within the western population, however, offspring produced on roe deer (Capreolus capreolus) were significantly larger, more cold‐tolerant, and had higher survival than those produced on moose in the same area. We discuss potential causes for both host‐specific and geographical differences in off‐host performance: (1) maternal host directly affects the offspring survival prospects; (2) divergent co‐evolution with local main host(s) has shaped the parasite's life history; and/or (3) off‐host performance is shaped by adaptation to the local abiotic environment. In conclusion, this study increases our understanding of the evolution of host–parasite interactions by demonstrating how geographical differences in host exploitation may result in differences in survival prospects outside the host.  相似文献   

13.
14.
15.
Plastids and mitochondria arose through endosymbiotic acquisition of formerly free‐living bacteria. During more than a billion years of subsequent concerted evolution, the three genomes of plant cells have undergone dramatic structural changes to optimize the expression of the compartmentalized genetic material and to fine‐tune the communication between the nucleus and the organelles. The chimeric composition of many multiprotein complexes in plastids and mitochondria (one part of the subunits being nuclear encoded and another one being encoded in the organellar genome) provides a paradigm for co‐evolution at the cellular level. In this paper, we discuss the co‐evolution of nuclear and organellar genomes in the context of environmental adaptation in species and populations. We highlight emerging genetic model systems and new experimental approaches that are particularly suitable to elucidate the molecular basis of co‐adaptation processes and describe how nuclear‐cytoplasmic co‐evolution can cause genetic incompatibilities that contribute to the establishment of hybridization barriers, ultimately leading to the formation of new species.  相似文献   

16.
Human adipose‐derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5‐azacytidine (5‐aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co‐culture with neonatal rat cardiomyocytes. 5‐aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5‐ to 1.9‐fold) and the number of cells co‐expressing nkx2.5/sarcomeric α‐actin (27.2%versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11‐fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA‐treated cells also stained positively for cardiac myosin heavy chain, α‐actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non‐contact co‐culture showed no cardiac differentiation; however, ASCs co‐cultured in direct contact co‐culture exhibited a time‐dependent increase in cardiac actin mRNA expression (up to 33‐fold) between days 3 and 14. Immunocytochemistry revealed co‐expression of GATA4 and Nkx2.5, α‐actin, TropI and cardiac myosin heavy chain in CM‐DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell‐to‐cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co‐culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.  相似文献   

17.
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome – called intralocus sexual conflict. Although the autosomal melanocortin‐1‐receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy–Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year‐specific deviations from Hardy–Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.  相似文献   

18.
Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1‐Hz resolution and GPS‐quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS‐quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V‐shaped, Mid‐water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short‐ and Long‐duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.  相似文献   

19.
20.
Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte‐binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba‐140, eba‐175, eba‐181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba‐140 seemed to be under stronger diversifying selection in South America than eba‐175. In contrast, eba‐181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号