首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of molecular techniques has shown that hybridization and introgression have significant impacts in evolution, by means of transfer of genetic variation and formation of hybrid species. In this paper we use mitochondrial and nuclear sequence data to investigate the evolutionary history, levels of genetic diversity and population differentiation of a rare and endangered fish species. Our results suggest that a hybrid origin scenario of Chondrostoma olisiponensis is a likely explanation for the shared genetic and morphological traits with Iberochondrostoma and Achondrostoma + Pseudochondrostoma. The basal positioning of C. olisiponensis alleles in all loci analyzed indicates that hybridization events occurred before differentiation within each of these groups, most likely during Middle–Late Miocene. Originally described as C. olisiponensis, we suggest that this species should be placed in the genus Iberochondrostoma to avoid confusion with ‘real’ central European Chondrostoma and to (partially) reflect its evolutionary history. Analyses of levels of genetic diversity and patterns of population subdivision show that populations of the rare Iberochondrostoma olisiponensis are differentiated (high and significant φST and F ST) and genetically depauperate (very low S, π, and θ). I. olisiponensis is simultaneously imperiled by small population sizes and contemporary bidirectional hybridization with another critically endangered sympatric species (Iberochondrostoma lusitanicum). Urgent ex-situ conservation measures involving supportive breeding of I. olisiponensis are needed to preserve present genetic variation and eventually increase in situ population sizes, along with further studies focused on different life history and behavioral characteristics of this highly endangered species.  相似文献   

2.
Two regions of mitochondrial (mt) DNA, cytochrome c oxidase subunit 1 (COI) and 16S rRNA, were sequenced in nine species of Betta from Thailand and Indonesia. Most species showed little intraspecific COI variation (adjusted mean = 0·48%) including the putative species Betta sp. Mahachai, but one species (Betta smaragdina) included three lineages showing much greater divergence (7·03–13·48%) that probably represent overlooked species. These findings were confirmed by maximum likelihood analysis and Bayesian inference, which revealed well‐supported corresponding monophyletic clades. Based on these results and morphological differences, the putative species Betta sp. Mahachai from central Thailand is a species distinct from other members of the B. splendens group and represents a new and hitherto undescribed species. Furthermore, this study also demonstrated the probable existence of two overlooked Betta species found in the Khorat plateau basin, illustrating the utility of mitochondrial genetic markers in the revelation of overlooked diversity.  相似文献   

3.
Pe?nerová, P. & Martínková, N. (2012). Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction. —Zoologica Scripta, 41, 211–219. Tree squirrels of the tribe Sciurini represent a group with unresolved phylogenetic relationships in gene trees. We used partial sequences of mitochondrial genes for 12S rRNA, 16S rRNA, cytochrome b and d‐loop, and nuclear irbp, c‐myc exon 2 and 3 and rag1 genes to reconstruct phylogenetic relationships within the tribe, maximizing the number of analysed species. Bayesian inference analysis of the concatenated sequences revealed common trends that were similar to those retrieved with supertree reconstruction. We confirmed congruence between phylogeny and zoogeography. The first group that diverged from a common ancestor was genus Tamiasciurus, followed by Palaearctic Sciurus and Indomalayan Rheithrosciurus macrotis. Nearctic and Neotropical Sciurus species formed a monophyletic group that included Microsciurus and Syntheosciurus. Neotropical Sciurini were monophyletic with a putative exception of Syntheosciurus brochus that was included in a polychotomy with Nearctic Sciurus in supertree analyses. Our data indicate that Sciurini tree squirrels originated in the northern hemisphere and ancestors of contemporary taxa attained their current distribution through overland colonization from the nearest continent rather than through trans‐Pacific dispersal.  相似文献   

4.
Mitochondrial retrograde regulation (MRR) is the transduction of mitochondrial signals to mediate nuclear gene expression. It is not clear whether MRR is a common regulation mechanism in plant abiotic stress response. In this study, we analysed the early abiotic stress response of the rice OsAOX1 genes, and the induction of OsAOX1a and OsAOX1b (OsAOX1a/b) was selected as a working model for the stress‐induced MRR studies. We found that the induction mediated by the superoxide ion (O)‐generating chemical methyl viologen was stronger than that of hydrogen peroxide (H2O2). The addition of reactive oxygen species (ROS) scavengers demonstrated that the stress induction was reduced by eliminating O. Furthermore, the stress induction did not rely on chloroplast‐ or cytosol‐derived O. Next, we generated transgenic plants overexpressing the superoxide dismutase (SOD) gene at different subcellular locations. The results suggest that only the mitochondrial SOD, OsMSD, attenuated the stress induction of OsAOX1a/b specifically. Therefore, our findings demonstrate that abiotic stress initiates the MRR on OsAOX1a/b and that mitochondrial O is involved in the process.  相似文献   

5.
Aim To investigate the population history and demographics of Jerdon’s pitviper, Protobothrops jerdonii, and elucidate how the unique physical conditions and heterogeneous mountain environments resulting from the uplift of the Tibetan Plateau shaped the genetic diversity and evolutionary history of the species. Location China and Vietnam. Methods We sequenced and analysed a total of 1752 base pairs from two mitochondrial genes, cytochrome b (cyt b) and NADH dehydrogenase subunit (ND4), for 81 specimens sampled from 27 localities across the species’ range, and a total of 464 base pairs from two nuclear genes for 28 representative samples from all mitochondrial DNA lineages. Based on these data, we constructed the genealogical relationships and estimated the divergence times of the mitochondrial DNA clades. Results The mitochondrial DNA results revealed the existence of five distinct, strongly supported and geographically structured DNA lineages within populations of P. jerdonii that are paraphyletic with respect to Protobothrops xiangchengensis. Estimation of divergence dates suggested that P. jerdonii possibly evolved in the western Hengduan Mountains region c. 6.6 Ma in the late Miocene. Nuclear DNA data did not provide sufficient resolution to distinguish the mitochondrial DNA lineages. Main conclusions Based on the present‐day distribution and intraspecific genealogy, the evolutionary history of P. jerdonii can be explained by a pattern of dispersal followed by vicariance. All lines of evidence suggest that historical biogeographical factors, particularly the north–south orientation of the higher mountains, as well as low‐elevation areas in western China, had the greatest influence on the population structure, lineage formation and species distribution of this snake. However, highly heterogeneous habitats and glacial cycles appear to have affected patterns of intraspecific differentiation. While our mitochondrial data provide evidence for clear phylogeographical structure, our small sampling of nuclear genes does not, suggesting that nuclear markers may not have had sufficient time to coalesce to match patterns observed in the mitochondrial data.  相似文献   

6.
Based on morphological data and analysis of mitochondrial cytochrome b gene and nuclear (S7 intron 1) DNA sequences, the phylogenetic relationships of all Pollimyrus species known from the Omo‐Turkana enclosed basin and Nile system below the Murchison Falls were solved. A mormyrid “Pollimyruspetherici is distantly related to all other studied Pollimyrus species and clusters together with Cyphomyrus species forming with the later a monophyletic group. Moreover, the West African (but not the Congo River) populations of Cyphomyrus psittacus, the type species of the genus, seem to be conspecific to C. petherici. That is, the range of the genus Cyphomyrus is extended toward the Nile and Omo‐Turkana basins. This genus belongs to the large clade widely distributed in sub‐Saharian Africa and characterized by the presence of a chin appendage. Significance of this character for mormyrid phylogeny is discussed. Two distinct lineages of Pollimyrus occurring sympatrically in the White Nile tributaries and previously reported as the light and dark forms of Pollimyrus isidori together with five other congeneric species studied form a monophyletic group. The light form apparently represents P. isidori distributed in the Nile system downstream of the Murchison Falls and West Africa; the dark‐colored form (designated as Pollimyrus “D”) represents a distinct phylogenetic lineage inhabiting both the Omo‐Turkana and the White Nile basin. Morphological and ecological data suggest that this form may be conspecific to East African Pollimyrus nigricans or most probably represents a new species.  相似文献   

7.
The delineation of Gammarus species is controversial because of extensive intraspecific morphological variation. The current study examined DNA sequences from the mitochondrial cytochrome c oxidase subunit I and the nuclear 28S genes as well as morphological and ecological data to determine the species boundaries of Gammarus species from China. The results of molecular analyses showed that Gammarus sp1, G. sp2, G. sp3, and G. sp4 are monophyletic and deeply divergent from sister groups. Detailed morphological and ecological comparisons with closely related species were consistent with molecular analyses. Gammarus sp1, G. sp2, G. sp3, and G. sp4 were described as four new species: Gammarus illustris sp. nov. , Gammarus clarus sp. nov. , Gammarus hypolithicus sp. nov. , and Gammarus parvioculus sp. nov. We recommend that molecular detected species should be formally named and described for future research. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 215–253.  相似文献   

8.
Darters represent a species rich group of North American freshwater fishes studied in the context of their diverse morphology, behavior, and geographic distribution. We report the first molecular phylogenetic analyses of the Boleosoma darter clade that includes complete species sampling. We estimated the relationship among the species of Boleosoma using DNA sequence data from a mitochondrial (cytochrome b) and a nuclear gene (S7 ribosomal protein intron 1). Our analyses discovered that the two Boleosoma species with large geographic distributions (E. nigrum and E. olmstedi) do not form reciprocally monophyletic groups in either gene trees. Etheostoma susanae and E. perlongum were phylogenetically nested in E. nigrum and E. olmstedi, respectively. While analysis of the nuclear gene resulted in a phylogeny where E. longimanum and E. podostemone were sister species, the mitochondrial gene tree did not support this relationship. Etheostoma vitreum was phylogenetically nested within Boleosoma in the mitochondrial DNA and nuclear gene trees. Our analyses suggest that current concepts of species diversity underestimate phylogenetic diversity in Boleosoma and that Boleosoma species likely provide another example of the growing number of discovered instances of mitochondrial genome transfer between darter species.  相似文献   

9.
We estimated a phylogeny for 10 taxa currently placed in four polytypic species that collectively encompass the African ‘brown buntings’: Cape Bunting Emberiza capensis, Cinnamon‐breasted Bunting Emberiza tahapisi, Lark‐like Bunting Emberiza impetuani and House Bunting Emberiza striolata. We made use of the mitochondrial cytochrome b gene and the nuclear introns 6–7 of ornithine decarboxylase (ODC), and intron 2 of myoglobin. There was substantial cytochrome b sequence divergence between taxa currently treated as conspecific: sahari vs. striolata (2.6–3.1% (uncorrected‐p); 3.0–3.6% (HKY + I)), and goslingi vs. tahapisi (4.4–4.7% (uncorrected‐p); 5.4–5.9% (HKY + I)). The degree of divergence of the nuclear loci among taxa was limited, and these loci lacked reciprocal monophyly, most likely as a consequence of incomplete lineage sorting. A single representative of the taxon septemstriata, generally treated as a member of the dark‐throated tahapisi group, here appears to be genetically consistent with the grey‐throated goslingi, and may be of hybrid origin. All other taxa allocated to E. striolata and E. tahapisi make up four reciprocally monophyletic groups consistent with sahari, striolata, tahapisi and goslingi, respectively. The extent of genetic evidence suggests that these taxa have been evolving as separate evolutionary lineages for a long time. This is further manifested in several morphological and vocal characteristics described previously, and we propose that these divergent taxa be treated as separate species: Cinnamon‐breasted Bunting Emberiza tahapisi, Gosling's Bunting Emberiza goslingi, Striolated Bunting Emberiza striolata and House Bunting Emberiza sahari. We do not propose any taxonomic changes regarding Emberiza impetuani or Emberiza capensis.  相似文献   

10.
Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta‐actin gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers depict the phylogenetic structures of S. stoliczkai, which consist of clade North and clade South. The split time of the two clades is dated back to 4.27 Mya (95% HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Plateau probably contain at least two glacial refugia for S. stoliczkai. SAMOVA supports the formation of four groups: (i) the Karakash River group; (ii) The Lake Pangong group; (iii) the Shiquan River group; (iv) the Southern Basin group. Clade North included Karakash River, Lake Pangong, and Shiquan River groups, while seven populations of clade South share the haplotypes. Genetic diversity, star‐like network, BSP analysis, as well as negative neutrality tests indicate recent expansions events of S. stoliczkai. Conclusively, our results illustrate the phylogeography of S. stoliczkai, implying the Shiquan River is presumably the main refuge for S. stoliczkai.  相似文献   

11.
Abstract. Phylogenetic relationships amongst Megastigmus species (Chalcidoidea: Torymidae) associated with conifer seeds were inferred from DNA sequence data. Twenty‐nine species of seed chalcids were analysed using two different genes, cytochrome b (mitochondrial DNA) and the D2 domain of the 28S ribosomal DNA. Maximum‐parsimony and maximum‐likelihood analyses showed that taxa formed two monophyletic groups, one clade comprising all species associated with Cupressaceae and Taxodiaceae hosts with the exception of Chamaecyparis, and the other clade composed of species associated with Pinaceae. Species infesting Cupressaceae and Taxodiaceae seemed to be specialized to particular host genera or even to be species specific, which was consistent with a taxonomic radiation following initial host adaptation. By contrast, Megastigmus species associated with Pinaceae appeared capable of shifting onto different congeneric species or even onto a new host genus, with their evolution apparently less constrained by plant association. We hypothesized that the Megastigmus group associated with Pinaceae may have a much higher invasive potential than that related to Cupressaceae. The study also confirmed the presence of invasive Nearctic species in the Palaearctic, and demonstrated the existence of a cryptic species complex.  相似文献   

12.
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922.  相似文献   

13.
The East Asian giant water bug species Appasus japonicus Vuillefroy and Appasus major Esaki are aquatic hemipteran insects whose ranges overlap, particularly in the Japanese Archipelago and on the Korean Peninsula. In rare cases, the two species co‐occur. Furthermore, they are very similar ecologically and also morphologically, making their identification extremely difficult, and the possibility of hybridization has also been suggested. In the present study, we re‐examined their taxonomic validity, and the characteristics useful for identifying them. To re‐examine the morphological traits useful for distinguishing these two species, 222 specimens of A. japonicus collected from Japan, Korea, and China, and 132 specimens of A. major from Japan and Korea, were examined. We also performed molecular phylogenetic analyses based on the mitochondrial DNA 16S rRNA and cytochrome oxidase subunit I (COI) regions and the nuclear DNA Histone 3 region. Although the two species are very similar ecologically and also morphologically, they showed significant genetic differentiation. Thus, there is likely some form of reproductive isolation acting between them. Major morphological characteristics overlap extensively between A. japonicus and A. major, and no particular trait was identified as being effective for differentiating these species. All the morphological characteristics examined overlapped between A. japonicus and A. major. However, a principal component analysis based on all of the morphological characteristics revealed that, despite the overlap between these species, it was possible to morphologically distinguish them. Therefore, a more accurate identification becomes possible using multiple characteristics rather than a single characteristic. The male genital paralobes, evaluated as the most useful morphological characteristic, was effective with 100% probability for the Japanese Appasus species. However, for the Asian (i.e. Korean) specimens, this characteristic was not useful. On the other hand, the results of molecular phylogenetic analyses based on the mitochondrial DNA 16S rRNA and COI regions and the nuclear DNA Histone 3 region clearly showed significant genetic differentiation between the two species. Notably, the results for the mitochondrial COI region strongly supported the independence of each monophyletic group (i.e. validity of each species). Therefore, DNA barcoding based on the mitochondrial DNA COI region is also considered useful for the identification of A. japonicus and A. major. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 615–643.  相似文献   

14.
The data used by Lynch Alfaro et al. (2012a, Journal of Biogeography, 39 , 272–288) and the biogeographical hypothesis postulated by these authors to explain the current distribution of capuchin monkeys were reanalysed including additional cytochrome b data from Sapajus xanthosternos and Sapajus flavius. Our reconstructed phylogeny placed S. xanthosternos in a monophyletic clade representing the most basal lineage of this genus. All analyses indicated polyphyletic arrangements for several capuchin species, suggesting that incomplete lineage sorting has occurred during their evolution. These results also suggest that available molecular data lack adequate variation for accurately resolving species relationships. These results suggest that the divergence of capuchin monkey genera may have occurred in the Atlantic Forest. However, a more conclusive scenario and better resolution of the species tree requires correct identification of species, data from several unlinked nuclear loci from a higher number of individuals per species, and careful analysis of ancient DNA data from museum specimens.  相似文献   

15.
The genus Sarcocheilichthys is a group of small cyprinid fishes comprising 10 species/sub‐species widely distributed in East Asia, which represents a valuable model for understanding the speciation of freshwater fishes in East Asia. In the present study, the molecular phylogenetic relationship of the genus Sarcocheilichthys was investigated using a 1140 bp section of the mitochondrial cytochrome b gene. Two different tree‐building methods, maximum parsimony (MP) and Bayesian methods, yielded trees with almost the same topology, yielding high bootstrap values or posterior probabilities. The results showed that the genus Sarcocheilichthys consists of two large clades, clades I and II. Clade I contains Sarcocheilichthys lacustris, Sarcocheilichthys sinensis and Sarcocheilichthys parvus, with S. parvus at a basal position. In clade II, Sarcocheilichthys variegatus microoculus is at a basal position; samples of the widespread species, Sarcocheilichthys nigripinnis, form a large subclade containing another valid species Sarcocheilichthys czerskii. Sarcocheilichthys kiangsiensis is retained at an intermediate position. Since S. czerskii is a valid species in the S. nigripinnis clade, remaining samples of S. nigripinnis form a paraphyly. This speciation process is attributed to geographical isolation and special environmental conditions experienced by S. czerskii and stable environments experienced by the other S. nigripinnis populations. This type of speciation process was suggested to be very common. Samples of Sarcocheilichthys sinensis sinensis and Sarcocheilichthys sinensis fukiensis that did not form their own monophyletic groups suggest an early stage of speciation and support their sub‐species status. Molecular clock analysis indicates that the two major lineages of the genus Sarcocheilichthys, clades I and II diverged c. 8·89 million years ago (mya). Sarcocheilichthys v. microoculus from Japan probably diverged 4·78 mya from the Chinese group. The northern–southern clades of S. nigripinnis began to diverge c. 2·12 mya, while one lineage of S. nigripinnis evolved into a new species, S. czerski, c. 0·34 mya.  相似文献   

16.
The worm‐like snakes (Scolecophidia; approximately 400 nominal extant species) have a conservative morphology and are among the most poorly‐known terrestrial vertebrates. Although molecular evidence has helped determine their higher‐level relationships, such data have rarely been used to discriminate among species. We generated a molecular data set for the continental Australian blindsnakes (genus Ramphotyphlops) to determine the concordance of molecular and morphological information in the taxonomic recognition of species. Our dataset included 741 specimens morphologically attributed to 27 nominal Ramphotyphlops species. We proposed species hypotheses (SHs) after analysis of sequences from a variable mitochondrial gene (cytochrome b) and examined these SHs with additional evidence from a nuclear gene (prolactin receptor) and geographical data. Although the nuclear marker was not as fast‐evolving and discriminating as the mitochondrial marker, there was congruence among the mitochondrial, nuclear, and geographical data, suggesting that the actual number of species is at least two times the current number of recognized, nominal species. Several biogeographical barriers and complex phytogeographical and geological patterns appeared to be involved in the division of some burrowing snake populations and, by consequence, in their diversification and speciation through isolation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 427–441.  相似文献   

17.
The flyingfish family Exocoetidae is a diverse group of marine fishes that are widespread and abundant in tropical and subtropical seas. Flyingfishes are epipelagic specialists that are easily distinguished by their enlarged fins, which are used for gliding leaps over the surface of the water. Although phylogenetic hypotheses have been proposed for flyingfish genera based on morphology, no comprehensive molecular studies have been performed. In the present study, we describe a species‐level molecular phylogeny for the family Exocoetidae, based on data from the mitochondrial cytochrome b gene (1137 bp) and the nuclear RAG2 gene (882 bp). We find strong support for previous morphology‐based phylogenetic hypotheses, as well as the monophyly of most currently accepted flyingfish genera. However, the most diverse genus Cheilopogon is not monophyletic. Using our novel flyingfish topology, we examine previously proposed hypotheses for the origin and evolution of gliding. The results support the progressive transition from two‐wing to four‐wing gliding. We also use phylogenetic approaches to test the macroecological effects of two life history characters (e.g. egg buoyancy and habitat) on species range size in flyingfishes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 161–174.  相似文献   

18.
Estimating the age of species or their component lineages based on sequence data is crucial for many studies in avian evolutionary biology. Although calibrations of the molecular clock in birds have been performed almost exclusively using cytochrome b (cyt b), they are commonly extrapolated to other mitochondrial genes. The existence of a large, standardized cytochrome c oxidase subunit I (COI) library generated as a result of the DNA barcoding initiative provides the opportunity to obtain a calibration for this mitochondrial gene in birds. In this study we compare the evolutionary rate of COI relative to cyt b across ten different avian orders. We obtained divergence estimates for both genes from nearly 300 phylogenetically independent pairs of species through the analysis of almost 5000 public sequences. For each pair of species we calculated the difference in divergence between COI and cyt b. Our results indicate that COI evolves on average 14% slower than cyt b, but also reveal considerable variation both among and within avian orders, precluding the use of this value as a standard adjustment for the COI molecular clock for birds. Our findings suggest that this variation is partially explained by a clear negative relationship between the difference in divergence in these genes and the age of species. Distances for cyt b are higher than those for COI for closely related species, but the values become similar as the divergence between the species increases. This appears to be the result of a stronger pattern of negative time‐dependency in the rate of cyt b than in that of COI, a difference that could be related to lower functional constraints on a small number of sites in cyt b that allow it to initially accumulate mutations more rapidly than COI.  相似文献   

19.
Aim To determine the origin and diversification of monachine seals using a phylogenetic framework. Methods Molecular sequence data from three mitochondrial genes (cyt b, ND1 and 12S), and one nuclear marker (an intron from the α‐lactalbumin gene) were examined from all extant species of monachine seals. Maximum likelihood and partitioned Bayesian inference were used to analyse separate and combined (mitochondrial + nuclear) data sets. Divergence times were estimated from the resultant phylogeny using nonparametric rate smoothing as implemented by the program r8s. Results Mirounga, Monachus and the Lobodontini form three well‐supported clades within a monophyletic Monachinae. Lobodontini + Mirounga form a clade sister to Monachus. Molecular divergence dates indicate that the first split within the Monachinae (Lobodontini + Mirounga clade and Monachus) occurred between 11.8 and 13.8 Ma and Mirounga, Monachus and the Lobodontini originated 2.7–3.4, 9.1–10.8 and 10.0–11.6 Ma, respectively. Main conclusions Two main clades exist within Monachinae, Monachus and Lobodontini + Mirounga. Monachus, a warm water clade, originated in the North Atlantic and maintained the temperate water affinities of their ancestors as they diversified in the subtropic regions of the Northern Hemisphere. The cold‐water clade, Lobodontini + Mirounga, dispersed southward to the cooler climates of the Southern Hemisphere. The Lobodontini continued south until reaching the Antarctic region where they diversified into the present‐day fauna. Mirounga shows an anti‐tropical distribution either reflective of a once cosmopolitan range that was separated by warming waters in the tropics or of transequatorial dispersal.  相似文献   

20.
We tested the efficiency of cytochrome oxidase I (COI)‐barcoding as a taxonomic tool to discriminate and identify sympatric shrew species on Mount Nimba (Guinea). We identified 148 specimens at the species level using morphological characters and comparison with type specimens, including several taxa from Mount Nimba. We identified ten morphospecies and tested aspects of genetic diversity and monophyly using genetic data from three mitochondrial (16S, cytochrome b, and COI) and one nuclear marker (the breast cancer gene, BRCA). Nine morphospecies were validated under the phylogenetic and genetic species concepts, including the recently diverged species Crocidura buettikoferi, Crocidura theresae, and Crocidura grandiceps. Under the same concepts, our analyses revealed the presence of two cryptic species amongst animals identified as Crocidura muricauda. We then tested the efficiency of barcoding thanks to commonly used phenetic methods, with the 148 specimens representing 11 potentially valid species based on morphological and molecular data. We show that COI‐barcoding is a powerful tool for shrew identification and can be used for taxonomic surveys. The comparison of genetic divergence values shows the presence of a barcoding gap (i.e. difference between the highest intraspecific and the lowest interspecific genetic divergence values). Given that only a few COI sequences are available for Afrotropical shrews, our work is an important step forward toward their enrichment. We also tested the efficiency of the three other sequenced markers and found that cytochrome b is as efficient as COI for barcoding shrews. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 672–687.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号