首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastomes of Fabaceae show both significant structural and size variation; however, most published plastomes are from subfamily Papilionoideae and only a few are from the other two subfamilies. In order to address the plastome structural and size variation of subfamily Mimosoideae, we integrated 11 newly sequenced plastomes from representing genera with three previously published ones. Each mimosoid plastome presented a typical quadripartite structure and contained 111 unique genes. Their inverted repeats (IRs) experienced multiple expansion/contraction; a ca. 13-kb IR expansion into small single copy (SSC) was detected in plastomes of a clade formed by tribe Ingeae and Acacia sensu stricto (s.s.), and a ca. 1.7-kb IR expansion into and a ca. 1.9-kb contraction out of large single copy (LSC) were found in Pithecellobium flexicaule and Acacia dealbata, respectively. Linear regression analysis showed decreased synonymous substitution rates of genes relocating from SSC into IR. A loss of both introns of clpP occurred in A. dealbata and Faidherbia albida, and a duplicated clpP copy was detected in A. dealbata. Furthermore, a 421-bp inversion that containing rps18 was found in A. dealbata. The size of mimosoid plastomes was found significantly affected by a IR-SC boundary shift, and also associated with repeat content. Plastome coding and noncoding regions with variable sequence divergence may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels. Plastid phylogenomics well resolved relationships among sampled mimosoid species.  相似文献   

2.
This work reports the complete plastid (pt) DNA sequence of Seseli montanum L. of the Apiaceae family, determined using next-generation sequencing technology. The complete genome sequence has been deposited in GenBank with accession No. KM035851. The S. montanum plastome is 147,823 bp in length. The plastid genome has a typical structure for angiosperms and contains a large single-copy region (LSC) of 92,620 bp and a small single-copy region (SSC) of 17,481 bp separated by a pair of 18,861 bp inverted repeats (IRa and IRb). The composition, gene order, and AT-content in the S. montanum plastome are similar to that of a typical flowering plant pt DNA. One hundred fourteen unique genes have been identified, including 30 tRNA genes, four rRNA genes, and 80 protein genes. Of 18 intron-containing genes found, 16 genes have one intron, and two genes (ycf3, clpP) have two introns. Comparative analysis of Apiaceae plastomes reveals in the S. montanum plastome a LSC/IRb junction shift, so that the part of the ycf2 (4980 bp) gene is located in the LSC, but the other part of ycf2 (1301 bp) is within the inverted repeat. Thus, structural rearrangements in the plastid genome of S. montanum result in an enlargement of the LSC region by means of capture of a large part of ycf2, in contrast to eight Apiaceae plastomes where the complete ycf2 gene sequence is located in the inverted repeat.  相似文献   

3.
The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of early-diverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.  相似文献   

4.
The phylogenetic positions of the families Campynemataceae and Corsiaceae within the order Liliales remains unclear. To date, molecular data from the plastid genome of Corsiaceae has been obtained exclusively from Arachnitis, for which alignment and phylogenetic inference has proved difficult. The extent of gene conservation among mycoheterotrophic species within Corsiaceae remains unknown. To clarify the phylogenetic position of Campynemataceae and Corsiaceae within Liliales, functional plastid-coding genes of species representing both families have been analyzed. Examination of two phylogenetic data sets of plastid genes employing parsimony, maximum-likelihood, and Bayesian inference methods strongly supported both families forming a basal clade to the remaining taxa of Liliales. The first data set consists of five functional plastid-encoded genes (matK, rps7, rps2, rps19, and rpl2) sequenced from Corsia dispar (Corsiaceae). The data set included 31 species representing all families within Liliales, as well as selected orders that are related closely to Liliales (10 outgroup species from Asparagales, Dioscoreales, and Pandanales). The second phylogenetic analysis was based on 75 plastid genes. This data set included 18 species from Liliales, representing major clades within the order, and 10 outgroup species from Asparagales, Dioscoreales, and Pandanales. In this latter data set, Campynemataceae was represented by 60 plastid-encoded genes sequenced from herbarium material of Campynema lineare. A large proportion of the plastid genome of C. dispar was also sequenced and compared to the plastid genomes of photosynthetic plants within Liliales and mycoheterotrophic plants within Asparagales to explore plastid genome reduction. The plastid genome of C. dispar is in the advanced stages of reduction, which signifies its high dependency on mycorrhizal fungi and is suggestive of a loss in photosynthetic ability. Functional plastid genes found in C. dispar may be applicable to other species in Corsiaceae, which will provide a basis for in-depth molecular analyses of interspecies relationships within the family, once molecular data from other members become available.  相似文献   

5.
To date, plastome studies of mycoheterotrophic orchids have focused on nongreen mycoheterotrophic or partially mycoheterotrophic species. Cymbidium macrorhizon is a fully mycoheterotrophic orchid that lacks leaves and roots, although its inflorescence rachis is pale green. It has degraded stomata, specific fungal partners, and high concentrations of heavy stable nitrogen and carbon isotopes. Therefore, the plastome of this species is expected to represent an early stage of a fully mycoheterotrophic plastome. In this study, we sequenced the plastomes of C. macrorhizon and closely related species (C. ensifolium, C. kanran, and C. lancifolium). Plastomes of the four Cymbidium species were almost identical structurally, but differed somewhat from those of previously studied species. The genes for the photosynthetic subunits of NADH dehydrogenase, ndhF and ndhH, were absent from all four newly sequenced plastomes, whereas only ndhJ was absent from C. ensifolium. In section Pachyrhizanthe (C. lancifolium and C. macrorhizon), ndhE, ndhI, and ndhJ were pseudogenized. With the exception of ndh and ycf, 64 protein-coding genes in C. macrorhizon were apparently functional. Most of them were highly conserved and under purifying selection. Therefore, no direct evidence is available to suggest that genes related to photosynthesis have lost their functions in C. macrorhizon. This discordance between molecular and physiological features for the trophic status of C. macrorhizon might result from a lag between photosynthetic function loss and relaxed purifying selection.  相似文献   

6.
Acacias (Mimosoideae) represent a major woody group in arid and subarid habitats of all tropical and subtropical regions. The genetic diversity and population dynamic of African species are still poorly investigated, in particular due to ploidy variation among and within species. Here, we aim to investigate the diversity of the plastid genome (or plastome) of Central Saharan mimosoids, in order to assess its potential utility for phylogenetic and population genetic analyses. We first used a genome skimming strategy to assemble the complete plastome plus the nuclear ribosomal DNA cluster of six species belonging to three genera (Vachellia, Senegalia, and Faidherbia). Phylogenetic relationships based on these data confirm the existence of three main evolutionary lineages in the Hoggar range (southern Algeria). An analysis of the plastome structure reveals an extension of the inverted repeat (IR) in Faidherbia albida as recently reported in two other genera of the same lineage (Inga and Acacia s.s.). Higher substitution rates are detected in this lineage, and our species sampling allows revealing genes (particularly accD, clpP, rps2, rps3, ycf1, ycf2, and ycf4) under positive selection following the IR extension. The reasons for this evolutionary transition need to be unraveled. We then develop 21 plastid microsatellites to be used on a large panel of mimosoid species. At a local scale, 18 of these loci reveal intra-specific polymorphism in at least one species. These markers may be useful to assess the genetic diversity of the plastome for comparative phylogeographies or population genetic studies.  相似文献   

7.
8.
9.
10.
Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL, matK, trnHpsbA, trnLCtrnLD, their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus, Conophallus and Amorphophallus. In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK, trnHpsbA, trnLCtrnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL.  相似文献   

11.
Alders (Alnus spp.) represent keystone species trees of riparian and mountainous habitats of the northern hemisphere. Previous genetic studies have suggested a complex intrageneric diversification with numerous events of interspecific hybridization and polyploidization. Here, we first aim to test the present taxonomical treatment of Alnus by generating phylogenetic hypotheses based on plastid and nuclear data obtained from species belonging to the three main alder subgenera (Alnus, Alnobetula, and Clethropsis). A genome-skimming strategy was used to assemble the complete plastome and the nuclear ribosomal DNA cluster of 22 Eurasian and American alder individuals. Phylogenies based on these data strongly support an early diverging subgenus Alnobetula, while members of the subgenus Clethropsis do not constitute a monophyletic clade and are embedded within the subgenus Alnus. Incongruent topologies also sustain reticulate evolution within this group. Our results thus suggest considering the subgenera Clethropsis and Alnus within the same taxonomical unit. Our second aim is to test for the utility of highly variable plastid markers (microsatellites) to investigate the phylogeographic patterns of Eurasian alder species. Fifty-two polymorphic plastid microsatellite markers were developed and tested on 33 populations of the subgenus Alnus in western Eurasia. On average, 4.3 alleles per locus were revealed in 131 individuals of Alnus glutinosa, allowing the identification of 30 chlorotypes (multiloci profiles). Strong phylogeographic signals and recurrent cytoplasmic captures between co-occurring species are revealed, demonstrating that our plastid microsatellite profiling method is suitable for tracing the post-glacial spread of maternal lineages among alder species. All these results finally support the use of nuclear genomic regions for species identification and of plastid markers for phylogeographic aspects and origin certification in genetic resource management.  相似文献   

12.
13.
14.

Background

Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison.

Results

This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection.

Conclusions

Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata.
  相似文献   

15.
16.
17.
18.
Rallidae, with 34 genera including 142 species, is the largest family in the Gruiformes, the phylogenetic placement of this family was still in debate. The complete mitochondrial genomes (mitogenomes), with many advantageous characters, have become popular markers in phylogenetic analyses. We sequenced the mitogenomes of brown crake (Amaurornis akool) and white-breasted waterhen (Amaurornis phoenicurus), analyzed the genomic characters of mitogenomes in Rallidae, and explored the phylogenetic relationships between Rallidae and other four families in Gruiformes based on mitogenome sequences of 32 species with Bayesian method. The mitogenome of A. akool/A. phoenicurus was 16,950/17,213 bp in length, and contained 37 genes typical to avian mitogenomes and one control region, respectively. The genomic characters of mitogenomes in Rallidae were similar. The phylogenetic results indicated that, among five families, Rallidae had closest relationship with Heliornithidae, which formed a sister taxa to Gruidae, while Rhynochetidae located in the basal lineage. Within Rallidae, Rallina was ancestral clade. Gallirallus & Rallus and Aramides were closely related, Gallicrex & Amaurornis and Fulica & Gallinula had close relationships, and these two taxa formed a sister clade to Porphyrio & Coturnicops. Our phylogenetic analyses provided solid evidence for the phylogenetic placement of Rallidae and the evolutionary relationships among different genus within this family. In addition, the mitogenome data presented here provide useful information for further molecular systematic investigations on Gruiformes as well as conservation biology research of these species.  相似文献   

19.
The higher level phylogeny of fungi has been addressed in previous studies, but for those analyses, either taxon sampling or gene sampling was low, or some basal lineages important for the inference of basidiomycete phylogeny were lacking. Here, a phylogenomic analysis based on highly conserved genes and including the enigmatic species Bartheletia paradoxa from Ginkgo biloba is presented. While phylogenetic analyses including also less conserved parts of core eukaryotic genes yielded a basal position for the extremophile genus Wallemia with low support, an exclusion of highly variable parts of these genes suggested Bartheletia paradoxa as the most basal member of the Agaricomycotina, but again with low support. Network analyses suggest a network-like evolution at the base of the Basidiomycota, supported by phylogenies based on single genes and gene clusters with shared topology. When further removing noise by removing poorly resolving genes, strong but not maximum support was obtained for Bartheletia paradoxa being the sister lineage to all other Agaricomycotina. We speculate that the lack of support for the early splits in Agaricomycotina and Basidiomycota can probably be explained by rapid radiation, linked to major evolutionary developments, such as, in the case of Basidiomycota, the advent of basidia in the last common ancestor.  相似文献   

20.
Orphanodendron is a taxonomically and geographically isolated South American genus of two species. When first described by Barneby and Grimes in 1990, the genus was placed in Leguminosae subfamily Caesalpinioideae, but that placement was doubted and the name Orphanodendron (Gr. orphanos, orphan + dendron, tree) was chosen to reflect the uncertain subfamilial relationship of the genus. In this study, nucleotide sequence data from five Orphanodendron specimens were added to 662 other, previously sampled, Leguminosae taxa representing all three currently recognized subfamilies (Caesalpinioideae, Mimosoideae and Papilionoideae) in a matK maximum parsimony analysis that resolved Orphanodendron as a member of the genistoid s.l. clade of subfamily Papilionoideae. Two additional Bayesian phylogenetic analyses with reduced taxon sampling of plastid (matK combined with trnL-F) and nuclear (ITS) loci strongly support the monophyly of Orphanodendron and unambiguously establish Orphanodendron as a member of the genistoid sensu lato clade. Although our plastid phylogenetic analysis finds relatively low support for a sister-group relationship with the African genus Camoensia, the nuclear-encoded ITS resolves Orphanodendron as sister to the Bowdichia clade with strong support and Camoensia as sister to other core genistoids. The phylogenetic resolution of Orphanodendron as a member of the genistoid s.l. legumes based on nuclear and plastid sequences will undoubtedly advance future evolutionary investigations of this Colombian endemic tropical tree genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号