首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comment on: Vitale I, et al. Cell Cycle 2010; 9:2823-9.  相似文献   

2.
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.  相似文献   

3.
Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.  相似文献   

4.
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.  相似文献   

5.
DZ, a benzodiazepine known to affect centrosome separation at prophase, leads to a higher degree of mitotic arrest in HeLa cells than in primary human fibroblasts. In fact, differently from fibroblasts, which undergo a transient block in prophase-to-prometaphase transition, a high proportion of tumor cells attempt to escape from the DZ-imposed mitotic block, fail to undergo complete mitosis and die by mitotic failure. DZ-treated samples showed certain biochemical hallmarks of apoptosis, such as induction of the proapototic Bax protein, mitochondrial alterations assessed by JC-1 staining and TEM analysis, PARP cleavage, and DNA fragmentation. However, in DZ-treated cells, we observed a very low or absent caspase activation as shown by immunofluorescence and immunoblot experiments with antibodies directed to activated caspases and by staining with the pancaspase inhibitor FITC-VAD-FMK. Experiments on mitochondrial depolymerization and apoptosis induction carried out in the presence of specific inhibitors of caspase-2 and caspase-3/7 indicated a caspase-independent apoptotic process induced by DZ. Accordingly, TEM analysis of treated cells revealed ultrastructural features resembling those reported for caspase-independent apoptosis. In conclusion, we hypothesize that HeLa cells override the prophase block imposed by DZ, producing a high rate of aberrant pro-metaphases, which, in turn, activates caspase-independent, apoptosis-like mitotic catastrophe.  相似文献   

6.
Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number.  相似文献   

7.
We have previously shown that a non-toxic noscapinoid, EM011 binds tubulin without altering its monomer/polymer ratio. EM011 is more active than the parent molecule, noscapine, in inducing G2/M arrest, inhibiting cellular proliferation and tumor growth in various human xenograft models. However, the mechanisms of mitotic-block and subsequent cell death have remained elusive. Here, we show that EM011-induced attenuation of microtubule dynamics was associated with impaired association of microtubule plus-end tracking proteins, such as EB1 and CLIP-170. EM011 treatment then led to the formation of multipolar spindles containing 'real' centrioles indicating drug-induced centrosome amplification and persistent centrosome declustering. Centrosome amplification was accompanied by an upregulation of Aurora A and Plk4 protein levels, as well as a surge in the kinase activity of Aurora A, suggesting a deregulation of the centrosome duplication cycle. Cell-cycle phase-specific experiments showed that the 'cytotoxicity-window' of the drug encompasses the late S-G2 period. Drug-treatment, excluding S-phase, not only resulted in lower sub-G1 population but also attenuated centrosome amplification and spindle multipolarity, suggesting that drug-induced centrosome amplification is essential for maximal cell death. Subsequent to a robust mitotic arrest, EM011-treated cells displayed diverse cellular fates suggesting a high degree of intraline variation. Some 'apoptosis-evasive' cells underwent aberrant cytokinesis to generate rampant aneuploidy that perhaps contributed to drug-induced cell death. These data indicate that spindle multipolarity induction by means of centrosome amplification has an exciting chemotherapeutic potential that merits further investigation.  相似文献   

8.
We have studied the response of human transformed cells to mitotic spindle inhibition. Two paired cell lines, K562 and its parvovirus-resistant KS derivative clone, respectively nonexpressing and expressing p53, were continuously exposed to nocodazole. Apoptotic cells were observed in both lines, indicating that mitotic spindle impairment induced p53-independent apoptosis. After a transient mitotic delay, both cell lines exited mitosis, as revealed by flow-cytometric determination of MPM2 antigen and cyclin B1 expression, coupled to cytogenetic analysis of sister centromere separation. Both cell lines exited mitosis without chromatid segregation. K562 p53-deficient cells further resumed DNA synthesis, giving rise to cells with a DNA content above 4C, and reentered a polyploid cycle. In contrast, KS cells underwent a subsequent G1 arrest in the tetraploid state. Thus, G1 arrest in tetraploid cells requires p53 function in the rereplication checkpoint which prevents the G1/S transition following aberrant mitosis; in contrast, p53 expression is dispensable for triggering the apoptotic response in the absence of mitotic spindle.  相似文献   

9.
Reversine is a small synthetic molecule that inhibits multiple mitotic kinases, including MPS1 as well as Aurora kinase A and B (AURKA and AURKB). Here, we investigated the effects of reversine on p53-deficient vs p53-proficient cancer cells. We found that low doses (~0.5 µM) of reversine, which selectively inhibit MPS1 and hence impair the spindle assembly checkpoint, kill human TP53?/? colon carcinoma cells less efficiently than their wild-type counterparts. In sharp contrast, high doses (~5 µM) of reversine induced hyperploidization and apoptosis to a much larger extent in TP53?/? than in TP53+/+ cells. Such a selective cytotoxicity could not be reproduced by the knockdown of MPS1, AURKA and AURKB, neither alone nor in combination, suggesting that it involves multiple (rather than a few) molecular targets of reversine. Videomicroscopy-based cell fate profiling revealed that, in response to high-dose reversine, TP53?/? (but not TP53+/+) cells undergo several consecutive rounds of abortive mitosis, resulting in the generation of hyperpolyploid cells that are prone to succumb to apoptosis upon the activation of mitotic catastrophe. In line with this notion, the depletion of anti-apoptotic proteins of the BCL-2 family sensitized TP53?/? cells to the toxic effects of high-dose reversine. Moreover, the knockdown of BAX or APAF-1, as well as the chemical inhibition of caspases, limited the death of TP53?/? cells in response to high-dose reversine. Altogether, these results suggest that p53-deficient cells are particularly sensitive to the simultaneous inhibition of multiple kinases, including MPS1, as it occurs in response to high-dose reversine.  相似文献   

10.
11.
To clarify effective chemotherapeutic regimens against cancer, we examined the effects of glycerol on apoptosis induced by CDDP treatment using cultured human cancer cells (in vitro) and transplanted tumor in mice (in vivo). Human tongue cell carcinoma (SAS) cells transfected with mutated p53 gene (SAS/m p53) showed CDDP-resistance compared with the cells with neo control gene (SAS/ neo). When those cultured cells were pre-treated with glycerol, CDDP-induced apoptosis was enhanced by glycerol in SAS/m p53 cells but not in SAS/ neo cells.In tumor-transplanted mice, the glycerol treatment to tumors enhanced growth delay induced by CDDP in mp53 tumors transplanted with SAS/m p53 cells, but not in wtp53 tumors transplanted with SAS/ neo cells. When transplanted tumors were treated with CDDP alone, the cells positive for active caspase-3, 85 kDa PARP and apoptosis were observed by immunohistochemical staining in wtp53 tumors but not in mp53 tumors. When the tumors were treated with CDDP combined with glycerol, positive cells were observed not only in wtp53 tumors but also in mp53 tumors. These results showed that the CDDP-induced growth inhibition of the tumors is p53 -dependent and that the enhanced growth delay by glycerol may be due to the increased apoptosis. Glycerol might be available for cancer chemotherapy in patients with mp53 tumors.  相似文献   

12.
Most solid human tumours are aneuploid, that is, they contain an abnormal number of chromosomes. Paradoxically, however, aneuploidy has been reported to induce a stress response that suppresses cellular proliferation in vitro. Here, we review the progress in our understanding of the causes and effects of aneuploidy in cancer and discuss how, in specific contexts, aneuploidy can provide a growth advantage and facilitate cellular transformation. We also explore the emerging possibilities for targeting the cause or consequences of aneuploidy therapeutically.  相似文献   

13.
Human papilloma virus (HPV) infection represents an emerging risk factor in head and neck squamous cell carcinoma (HNSCC). In contrast to HPV-negative HNSCC, most cases of HPV-positive HNSCC encode wild-type p53, although the p53 protein in these cells is rapidly degraded via HPV E6-mediated ubiquitination and subsequent proteasomal degradation. This unique feature of HPV-positive HNSCC has raised hope that liberation of wild-type p53 from the E6 protein may have therapeutic benefit in this disease. Indeed, suppression of E6 expression promotes apoptosis in HPV-positive HNSCC cell lines. However, the role of p53 in mediating this cell death has not been determined. Here, we demonstrate that siRNAs targeting the E6/E7 RNA, or treatment with the proteasome inhibitor bortezomib, resulted in upregulation of functional p53 and p53 gene targets in three HPV-positive HNSCC cell lines, but not in HPV-negative HNSCC cells. Apoptosis induced by E6/E7 siRNA in HPV-positive cells was found to be dependent on p53, while bortezomib-induced cell death was modestly p53-dependent. Treatment with subtoxic doses of bortezomib led to cell cycle arrest in HPV-positive, but not HPV-negative HNSCC cells. Moreover, this cell cycle arrest was mediated by p53 and the cell cycle inhibitor p21, the product of a p53 target gene. Collectively, these findings establish that wild-type p53 encoded by HPV-positive HNSCC cells, once liberated from HPV E6, can play important roles in promoting apoptosis and cell cycle arrest.  相似文献   

14.
15.
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAILDR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAILDR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments.  相似文献   

16.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

17.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

18.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

19.
Collaborator of ARF (CARF) was cloned as an ARF-interacting protein and shown to regulate the p53-p21(WAF1)-HDM2 pathway, which is central to tumor suppression via senescence and apoptosis. We had previously reported that CARF inhibition in cancer cells led to polyploidy and caspase-dependent apoptosis, however, the mechanisms governing this phenomenon remained unknown. Thus, we examined various cell death and survival pathways including the mitochondrial stress, ataxia telangiectasia mutated (ATM)-ATR, Ras-MAP kinase and retinoblastoma cascades. We found that CARF is a pleiotropic regulator with widespread effects; its suppression affected all investigated pathways. Most remarkably, it protected the cells against genotoxicity; CARF knockdown elicited DNA damage response as evidenced by increased levels of phosphorylated ATM and γH2AX, leading to induction of mitotic arrest and eventual apoptosis. We also show that the CARF-silencing-induced apoptosis in vitro translates to in vivo. In a human tumor xenograft mouse model, treatment of developing tumors with short hairpin RNA (shRNA) against CARF via an adenovirus carrier induced complete suppression of tumor growth, suggesting that CARF shRNA is a strong candidate for an anticancer reagent. We demonstrate that CARF has a vital role in genome preservation and tumor suppression and CARF siRNA is an effective novel cancer therapeutic agent.  相似文献   

20.
Chromosome instability, a major property of cancer cells, is believed to promote mutations that establish malignant phenotypes. Centrosome hyperamplification and the consequential increase in the frequency of aberrant mitoses are the major causes of chromosome instability in cancer cells that lack the functional p53 tumor suppressor protein. Here, we examined dynamic changes of chromosome and centrosome behaviors during long-term culturing of primary epithelial cells derived from p53-null mice. The heterogeneity in the number of chromosomes per cell in the early to mid passage cell population diminished in late passage cells, giving rise to distinct subpopulations of cells. Concomitantly, centrosome hyperamplification that was observed at a high frequency in early to mid passage cells was suppressed in late passage cells. These results provide an explanation for the frequent observations that some cancer cell lines and tissues that lack functional p53 show normal centrosome behaviors and altered, yet relatively stable, chromosomes. Moreover, our in vitro findings may provide a model for possible genomic convergence in cultured cells. This may be analogous to the genomic convergence model proposed for in vivo tumor progression in which chromosome instability initially imposed during tumorigenesis becomes suppressed when neoplastic cells have acquired chromosome compositions that promise an optimal growth in a given environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号