首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
CRM1 mediates nuclear export of numerous proteins and ribonucleoproteins containing a leucine-rich nuclear export signal (NES). Binding of RanGTP to CRM1 in the nucleus stabilizes cargo association with CRM1, and vice versa, but the mechanism underlying the positive cooperativity in RanGTP and NES binding to CRM1 remains incompletely understood. Herein we report a 2.1-Å-resolution crystal structure of unliganded Saccharomyces cerevisiae CRM1 (Xpo1p) that demonstrates that an internal loop of CRM1 (referred to as HEAT9 loop) is primarily responsible for maintaining the NES-binding cleft in a closed conformation, rendering CRM1 incapable of NES binding in the absence of RanGTP. The structure also shows that the C-terminal tail of CRM1 stabilizes the autoinhibitory conformation of the HEAT9 loop and thereby reinforces autoinhibition. Comparison with the structures of CRM1–NES–RanGTP complexes reveals how binding of RanGTP is associated with a series of allosteric conformational changes in CRM1 that lead to opening of the NES-binding cleft, allowing for stable binding of NES cargoes.  相似文献   

2.
CRM1/Exportin1 mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES) by forming a cooperative ternary complex with the NES-bearing substrate and the small GTPase Ran. We present a structural model of human CRM1 based on a combination of X-ray crystallography, homology modeling, and electron microscopy. The architecture of CRM1 resembles that of the import receptor transportin1, with 19 HEAT repeats and a large loop implicated in Ran binding. Residues critical for NES recognition are identified adjacent to the cysteine residue targeted by leptomycin B (LMB), a specific CRM1 inhibitor. We present evidence that a conformational change of the Ran binding loop accounts for the cooperativity of Ran- and substrate binding and for the selective enhancement of CRM1-mediated export by the cofactor RanBP3. Our findings indicate that a single architectural and mechanistic framework can explain the divergent effects of RanGTP on substrate binding by many import and export receptors.  相似文献   

3.
The toroid-shaped nuclear protein export factor CRM1 is constructed from 21 tandem HEAT repeats, each of which contains an inner (B) and outer (A) α-helix joined by loops. Proteins targeted for export have a nuclear export signal (NES) that binds between the A-helices of HEAT repeats 11 and 12 on the outer surface of CRM1. RanGTP binding increases the affinity of CRM1 for NESs. In the absence of RanGTP, the CRM1 C-terminal helix, together with the HEAT repeat 9 loop, modulates its affinity for NESs. Here we show that there is an electrostatic interaction between acidic residues at the extreme distal tip of the C-terminal helix and basic residues on the HEAT repeat 12 B-helix that lies on the inner surface of CRM1 beneath the NES binding site. Small angle x-ray scattering indicates that the increased affinity for NESs generated by mutations in the C-terminal helix is not associated with large scale changes in CRM1 conformation, consistent with the modulation of NES affinity being mediated by a local change in CRM1 near the NES binding site. These data also suggest that in the absence of RanGTP, the C-terminal helix lies across the CRM1 toroid in a position similar to that seen in the CRM1-Snurportin crystal structure. By creating local changes that stabilize the NES binding site in its closed conformation and thereby reducing the affinity of CRM1 for NESs, the C-terminal helix and HEAT 9 loop facilitate release of NES-containing cargo in the cytoplasm and also inhibit their return to the nucleus.  相似文献   

4.
Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins.  相似文献   

5.
Chromosomal region maintenance 1 (CRM1) mediates p53 nuclear export. Although p53 SUMOylation promotes its nuclear export, the underlying mechanism is unclear. Here we show that tethering of a small, ubiquitin-like modifier (SUMO) moiety to p53 markedly increases its cytoplasmic localization. SUMO attachment to p53 does not affect its oligomerization, suggesting that subunit dissociation required for exposing p53’s nuclear export signal (NES) is unnecessary for p53 nuclear export. Surprisingly, SUMO-mediated p53 nuclear export depends on the SUMO-interacting motif (SIM)-binding pocket of SUMO-1. The CRM1 C-terminal domain lacking the NES-binding groove interacts with tetrameric p53, and the proper folding of the p53 core domain, rather than the presence of the N- or C-terminal tails, appears to be important for p53–CRM1 interaction. The CRM1 Huntington, EF3, a subunit of PP2A, and TOR1 9 (HEAT9) loop, which regulates GTP-binding nuclear protein Ran binding and cargo release, contains a prototypical SIM. Remarkably, disruption of this SIM in conjunction with a mutated SIM-binding groove of SUMO-1 markedly enhances the binding of CRM1 to p53-SUMO-1 and their accumulation in the nuclear pore complexes (NPCs), as well as their persistent association in the cytoplasm. We propose that SUMOylation of a CRM1 cargo such as p53 at the NPCs unlocks the HEAT9 loop of CRM1 to facilitate the disassembly of the transporting complex and cargo release to the cytoplasm.  相似文献   

6.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.  相似文献   

7.
8.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

9.
Transport of macromolecules between the nucleus and cytoplasm involves the recognition of intrinsic localization signals by either import or export receptors. The interaction of the receptors with their cargo is regulated by the small GTPase Ran in its GTP bound state. We have investigated the interaction of RanGTP with the import factor, importin beta, the export factor, CRM1, and the Ran binding protein, RanBP1, in solution. Importin beta specifically protected residues in the switch regions and basic patch region of Ran against proteolytic cleavage, whereas RanBP1 protected the C terminus. Moreover, the binding of importin beta induced a conformational change in the structure of Ran leading to an exposure of the C terminus and stimulated the binding of RanBP1. Mutating the basic patch (HRKK(142)) of Ran resulted in an increased binding of RanBP1 and weakened importin beta binding. In contrast to wild-type Ran, the mutant Ran could be released from importin beta independently of importin alpha. These data provide experimental support for a model in which the accessibility of the C terminus of Ran is influenced by an intramolecular interaction between the basic patch and the C-terminal acidic DEDDDL(216) motif. Binding of importin beta probably disrupts this interaction causing an exposure of the C-terminal extension, which is favorable for RanBP1 binding. Interestingly, basic patch mutations abolish CRM1 interaction, indicating that the determinants for RanGTP binding to the export factor, CRM1, is different from the import factor, importin beta.  相似文献   

10.
The nucleocytoplasmic transport receptor CRM1 mediates the export of macromolecules from the nucleus to the cytoplasm by forming a ternary complex with a cargo molecule and RanGTP. The in vivo mechanism of CRM1 export complex formation and its mobility throughout the nucleus have not been fully elucidated. More information is required to fully understand complex formation and the dynamics of CRM1-cargo-RanGTP complexes in space and time. We demonstrate true molecular interaction of CRM1 with its Rev cargo in living cells by using fluorescence resonance energy transfer (FRET). Interestingly, we found that the inhibitory effect of leptomycin B on this CRM1-cargo interaction is Ran dependent. Using fluorescence recovery after photobleaching (FRAP), we show that CRM1 moves at rates similar to that of free green fluorescent protein in the nucleoplasm. A slower mobility was detected on the nuclear membrane, consistent with known CRM1 interactions with nuclear pores. Based on these data, we propose an in vivo model in which CRM1 roams through the nucleus in search of high-affinity binding sites. CRM1 is able to bind Rev cargo in the nucleolus, and upon RanGTP binding a functional export complex is produced that is exported to the cytoplasm.  相似文献   

11.
Leucine-rich nuclear export signals (NESs) mediate rapid nuclear export of proteins via interaction with CRM1. This interaction is stimulated by RanGTP but remains of a relatively low affinity. In order to identify strong signals, we screened a 15-mer random peptide library for CRM1 binding, both in the presence and absence of RanGTP. Under each condition, strikingly similar signals were enriched, conforming to the NES consensus sequence. A derivative of an NES selected in the absence of RanGTP exhibits very high affinity for CRM1 in vitro and stably binds without the requirement of RanGTP. Localisation studies and RNA interference demonstrate inefficient CRM1-mediated export and accumulation of CRM1 complexed with the high-affinity NES at nucleoporin Nup358. These results provide in vivo evidence for a nuclear export reaction intermediate. They suggest that NESs have evolved to maintain low affinity for CRM1 to allow efficient export complex disassembly and release from Nup358.  相似文献   

12.
We investigated the role of RanBP3, a nuclear member of the Ran-binding protein 1 family, in CRM1-mediated protein export in higher eukaryotes. RanBP3 interacts directly with CRM1 and also forms a trimeric complex with CRM1 and RanGTP. However, RanBP3 does not bind to CRM1 like an export substrate. Instead, it can stabilize CRM1–export substrate interaction. Nuclear RanBP3 stimulates CRM1-dependent protein export in permeabilized cells. These data indicate that RanBP3 functions by a novel mechanism as a cofactor in recognition and export of certain CRM1 substrates. In vitro, RanBP3 binding to CRM1 affects the relative affinity of CRM1 for different substrates.  相似文献   

13.
14.
Chromosome region maintenance 1 (CRM1) exports nuclear export signal (NES) containing cargos from nucleus to cytoplasm and plays critical roles in cancer and viral infections. Biochemical and biophysical studies on this protein were often obstructed by its low purification yield and stability. With the help of PROSS server and NES protection strategy, we successfully designed three small fragments of CRM1, each made of four HEAT repeats and capable of binding to NESs in the absence of RanGTP. One of the fragments, C7, showed dramatically improved purification yield, thermostability, mechanostability, and resistance to protease digestion. We showed by isothermal titration that the protein kinase inhibitor NES binds to C7 at 1.18 μM affinity. Direct binding to C7 by several reported CRM1 inhibitors derived from plants were verified using pull‐down assays. These fragments might be useful for the development of CRM1 inhibitors towards treatment of related diseases. The strategy applied here might help to tackle similar problems encountered in different fields.  相似文献   

15.
Ran GTPase is required for nucleocytoplasmic transport of many types of cargo. Several proteins that recognize Ran in its GTP-bound state (Ran x GTP) possess a conserved Ran-binding domain (RanBD). Ran-binding protein-1 (RanBP1) has a single RanBD and is required for RanGAP-mediated GTP hydrolysis and release of Ran from nuclear transport receptors (karyopherins). In budding yeast (Saccharomyces cerevisiae), RanBP1 is encoded by the essential YRB1 gene; expression of mouse RanBP1 cDNA rescues the lethality of Yrb1-deficient cells. We generated libraries of mouse RanBP1 mutants and examined 11 mutants in vitro and for their ability to complement a temperature-sensitive yrb1 mutant (yrb1-51(ts)) in vivo. In 9 of the mutants, the alteration was a change in a residue (or 2 residues) that is conserved in all known RanBDs. However, 4 of these 9 mutants displayed biochemical properties indistinguishable from that of wild-type RanBP1. These mutants bound to Ran x GTP, stimulated RanGAP, inhibited the exchange activity of RCC1, and rescued growth of the yrb1-51(ts) yeast cells. Two of the 9 mutants altered in residues thought to be essential for interaction with Ran were unable to rescue growth of the yrb1(ts) mutant and did not bind detectably to Ran in vitro. However, one of these 2 mutants (and 2 others that were crippled in other RanBP1 functions) retained some ability to co-activate RanGAP. A truncated form of RanBP1 (lacking its nuclear export signal) was able to complement the yrb1(ts) mutation. When driven from the YRB1 promoter, 4 of the 5 mutants most impaired for Ran binding were unable to rescue growth of the yrb1(ts) cells; remarkably, these mutants could nevertheless form ternary complexes with importin-5 or importin-beta and Ran-GTP. The same mutants stimulated only inefficiently RanGAP-mediated GTP hydrolysis of the Ran x GTP x importin-5 complex. Thus, the essential biological activity of RanBP1 in budding yeast correlates not with Ran x GTP binding per se or with the ability to form ternary complexes with karyopherins, but with the capacity to potentiate RanGAP activity toward GTP-bound Ran in these complexes.  相似文献   

16.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

17.
The termination of export processes from the nucleus to the cytoplasm in higher eukaryotes is mediated by binding of the small GTPase Ran as part of the export complexes to the Ran-binding domains (RanBD) of Ran-binding protein 2 (RanBP2) of the nuclear pore complex. So far, the structures of the first RanBD of RanBP2 and of RanBP1 in complexes with Ran have been known from X-ray crystallographic studies. Here we report the NMR solution structure of the uncomplexed second RanBD of RanBP2. The structure shows a pleckstrin homology (PH) fold featuring two almost orthogonal beta-sheets consisting of three and four strands and an alpha-helix sitting on top. This is in contrast to the RanBD in the crystal structure complexes in which one beta-strand is missing. That is probably due to the binding of the C-terminal alpha-helix of Ran to the RanBD in these complexes. To analyze the interaction between RanBD2 and the C terminus of Ran, NMR-titration studies with peptides comprising the six or 28 C-terminal residues of Ran were performed. While the six-residue peptide alone does not bind to RanBD2 in a specific manner, the 28-residue peptide, including the entire C-terminal helix of Ran, binds to RanBD2 in a manner analogous to the crystal structures. By solving the solution structure of the 28mer peptide alone, we confirmed that it adopts a stable alpha-helical structure like in native Ran and therefore serves as a valid model of the Ran C terminus. These results support current models that assume recognition of the transport complexes by the RanBDs through the Ran C terminus that is exposed in these complexes.  相似文献   

18.
Crm1 is a member of the karyopherin family of nucleocytoplasmic transport receptors and mediates the export of proteins from the nucleus by forming a ternary complex with cargo and Ran:GTP. This complex translocates through the nuclear pores and dissociates in the cytosol. The yeast protein Yrb2p participates in this pathway and binds Crm1, but its mechanism of action has not been established. We show that the human orthologue of Yrb2p, Ran-binding protein 3 (RanBP3), acts as a cofactor for Crm1-mediated export in a permeabilized cell assay. RanBP3 binds directly to Crm1, and the complex possesses an enhanced affinity for both Ran:GTP and cargo. RanBP3 shuttles between the nucleus and the cytoplasm by a Crm1-dependent mechanism, and the Crm1--RanBP3-NES-Ran:GTP quarternary complex can associate with nucleoporins. We infer that this complex translocates through the nuclear pore to the cytoplasm where it is disassembled by RanBP1 and Ran GTPase--activating protein.  相似文献   

19.
All major nuclear export pathways so far examined follow a general paradigm. Specifically, a complex is formed in the nucleus, containing the export cargo, a member of the importin-beta family of transporters and RanGTP. This complex is translocated across the nuclear pore to the cytoplasm, where hydrolysis of the GTP on Ran is stimulated by the GTPase-activating protein RanGAP. The activity of RanGAP is increased by RanBP1, which also promotes disassembly of RanGTP-cargo-transporter complexes. Here we investigate the role of RanGTP in the export of mRNAs generated by splicing. We show that nuclear injection of a Ran mutant (RanT24N) or the normally cytoplasmic RanGAP potently inhibits the export of both tRNA and U1 snRNA, but not of spliced mRNAs. Moreover, nuclear injection of RanGAP together with RanBP1 blocks tRNA export but does not affect mRNA export. These and other data indicate that export of spliced mRNA is the first major cellular transport pathway that is independent of the export co-factor Ran.  相似文献   

20.
Signal-dependent nuclear protein export was studied in perforated nuclei and isolated nuclear envelopes of Xenopus oocytes by optical single transporter recording. Manually isolated and purified oocyte nuclei were attached to isoporous filters and made permeable for macromolecules by perforation. Export of a recombinant protein (GG-NES) containing the nuclear export signal (NES) of the protein kinase A inhibitor through nuclear envelope patches spanning filter pores could be induced by the addition of GTP alone. Export continued against a concentration gradient, and was NES dependent and inhibited by leptomycin B and GTPgammaS, a nonhydrolyzable GTP analogue. Addition of recombinant RanBP3, a potential cofactor of CRM1-dependent export, did not promote GG-NES export at stoichiometric concentration but gradually inhibited export at higher concentrations. In isolated filter-attached nuclear envelopes, export of GG-NES was virtually abolished in the presence of GTP alone. However, a preformed export complex consisting of GG-NES, recombinant human CRM1, and RanGTP was rapidly exported. Unexpectedly, export was strongly reduced when the export complex contained RanGTPgammaS or RanG19V/Q69L-GTP, a GTPase-deficient Ran mutant. This paper shows that nuclear transport, previously studied in intact and permeabilized cells only, can be quantitatively analyzed in perforated nuclei and isolated nuclear envelopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号