首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.  相似文献   

4.
5.
Zhu FX  Yuan Y 《Journal of virology》2003,77(7):4221-4230
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF45 is encoded by an immediate-early gene in the KSHV genome. This protein was recently shown to interact with interferon regulatory factor 7 and inhibit virus-mediated alpha/beta interferon induction (Zhu et al., Proc. Natl. Acad. Sci. USA 99:5573-5578, 2002). ORF45 was characterized as a phosphorylated protein, and it is localized in the cytoplasm of infected cells. In this report, we provide evidence that ORF45 is associated with KSHV virions. (i) ORF45 was detected in gradient-purified virions by Western blotting along with known structural proteins of KSHV including gB, K8.1, and major capsid protein. In contrast, ORF50/Rta, K8alpha, and ORF59/PF8 were not detected in the same virion preparation. (ii) ORF45 comigrates with KSHV virions in sucrose gradient ultracentrifugation. (iii) Virion-associated ORF45 was resistant to trypsin digestion but became sensitive after the virions were treated with detergent which destroys the viral envelope. (iv) ORF45 remained associated with tegument-nucleocapsid complex when virion-specific glycoproteins were removed after detergent treatment. (v) An ORF45 protein band was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extensively purified KSHV virions and identified by mass spectrometry. (vi) By immunoelectron microscopy, virus-like structures were specifically stained by anti-ORF45 antibody. Based on the evidence, we conclude that ORF45 is associated with purified KSHV virions and appears to be a tegument protein. The presence of ORF45 in KSHV virions raised the possibility that this protein may be delivered to host cells at the start of infection and therefore have the opportunity to act at the very early stage of the infection, suggesting an important role of ORF45 in KSHV primary infection.  相似文献   

6.
7.
The specialized protein synthesis functions of the cytosol and endoplasmic reticulum compartments are conferred by the signal recognition particle (SRP) pathway, which directs the cotranslational trafficking of signal sequence-encoding mRNAs from the cytosol to the endoplasmic reticulum (ER). Although subcellular mRNA distributions largely mirror the binary pattern predicted by the SRP pathway model, studies in mammalian cells, yeast, and Drosophila have also demonstrated that cytosolic protein-encoding mRNAs are broadly represented on ER-bound ribosomes. A mechanism for such noncanonical mRNA localization remains, however, to be identified. Here, we examine the hypothesis that de novo translation initiation on ER-bound ribosomes serves as a mechanism for localizing cytosolic protein-encoding mRNAs to the ER. As a test of this hypothesis, we performed single molecule RNA fluorescence in situ hybridization studies of subcellular mRNA distributions and report that a substantial fraction of mRNAs encoding the cytosolic protein GAPDH resides in close proximity to the ER. Consistent with these data, analyses of subcellular mRNA and ribosome distributions in multiple cell lines demonstrated that cytosolic protein mRNA-ribosome distributions were strongly correlated, whereas signal sequence-encoding mRNA-ribosome distributions were divergent. Ribosome footprinting studies of ER-bound polysomes revealed a substantial initiation codon read density enrichment for cytosolic protein-encoding mRNAs. We also demonstrate that eukaryotic initiation factor 2α is bound to the ER via a salt-sensitive, ribosome-independent mechanism. Combined, these data support ER-localized translation initiation as a mechanism for mRNA recruitment to the ER.  相似文献   

8.
9.
The plant viral re‐initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re‐initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor—re‐initiation supporting protein (RISP)—that enhances TAV function in re‐initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C‐terminus of ribosomal protein L24. RISP pre‐bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co‐localize in epidermal cells of infected plants, and eIF3–TAV–RISP–L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3‐bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.  相似文献   

10.
《MABS-AUSTIN》2013,5(2):233-242
Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication.  相似文献   

11.
12.
13.
The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS‐CoV‐2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS‐CoV‐2 and SARS‐CoV share an otherwise non‐conserved part of non‐structural protein 3 (Nsp3), therefore named as “SARS‐unique domain” (SUD). We previously found a yeast‐2‐hybrid screen interaction of the SARS‐CoV SUD with human poly(A)‐binding protein (PABP)‐interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS‐CoV SUD:Paip1 interaction by size‐exclusion chromatography, split‐yellow fluorescent protein, and co‐immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS‐CoV‐2 and Paip1. The three‐dimensional structure of the N‐terminal domain of SARS‐CoV SUD (“macrodomain II”, Mac2) in complex with the middle domain of Paip1, determined by X‐ray crystallography and small‐angle X‐ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC‐SARS‐CoV replicon‐transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS‐CoV and SARS‐CoV‐2.  相似文献   

14.
IRF-7 is the master regulator of type I interferon-dependent immune responses controlling both innate and adaptive immunity. Given the significance of IRF-7 in the induction of immune responses, many viruses have developed strategies to inhibit its activity to evade or antagonize host antiviral responses. We previously demonstrated that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E., and Yuan, Y. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5573-5578). In this report, we sought to reveal the mechanism underlying the ORF45-mediated inactivation of IRF-7. We found that ORF45 interacts with the inhibitory domain of IRF-7. The most striking feature in the IRF-7 inhibitory domain is two α-helices H3 and H4 that contain many hydrophobic residues and two β-sheets located between the helices that are also very hydrophobic. These hydrophobic subdomains mediate intramolecular interactions that keep the molecule in a closed (inactive) form. Mutagenesis studies confirm the contribution of the hydrophobic helices and sheets to the autoinhibition of IRF-7 in the absence of viral signal. The binding of ORF45 to the critical domain of IRF-7 leads to a hypothesis that ORF45 may maintain the IRF-7 molecule in the closed form and prevent it from being activated in response to viral infection.  相似文献   

15.
16.
17.
C. Lobo, S. Amin, A. Ramsay, T. Diss and G. Kocjan Serous fluid cytology of multicentric Castleman’s disease and other lymphoproliferative disorders associated with Kaposi sarcoma‐associated herpes virus: a review with case reports Objective: The aim of this study is to describe and review the cytological features of Kaposi sarcoma‐associated herpes virus (KSHV) related entities, such as multicentric Castleman’s disease (MCD), plasmablastic‐lymphoma (PBL) and primary effusion lymphoma (PEL), which all may present as body cavity effusions. Serous fluid cytology of MCD and PBL has not, to our knowledge, thus far been described. Although different in nature, MCD, PBL and PEL are characterized by similar morphological features. Materials and methods: Body cavity effusions from four different patients with previously known or unknown KSHV‐related lymphoproliferations have been examined by routine cytology, immunocytochemistry (IC) and polymerase chain reaction (PCR). Results: MCD, PBL and PEL are all characterized by increased cellularity, comprising mainly lymphoid and plasmacytoid cells with variable proportions of immunoblasts. Immunocytochemistry and PCR results show the MCD to be CD138 and KSHV positive, CD30 negative, IgM, IgH and lambda restricted but IgH polyclonal. PBL was CD138 positive, kappa restricted, weakly positive with VS38 and over 80% positive with MIB 1. PEL was CD45, EMA, CD138, KSHV, p53 and CD3 positive, CD20, EBV, CD30, CD2, CD4, ALK1, epithelial and mesothelial markers negative, and PCR monoclonal B‐cell expanded (Ig‐kappa bands). Conclusion: Cytological examination of effusions in KSHV‐related lymphoproliferative disorders may show similar morphological features but clonality studies and immunocytochemistry are very helpful in distinguishing between these rare benign and malignant lymphoproliferative diseases.  相似文献   

18.
19.
Meiotic cell‐cycle progression in progesterone‐stimulated Xenopus oocytes requires that the translation of pre‐existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle‐dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi‐binding element (MBE) and the MBE‐binding protein, Musashi. Our findings indicate that although the cyclin B5 3′ UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3′ UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE‐dependant mRNA translation.  相似文献   

20.
The Kaposi's sarcoma-associated herpesvirus (KSHV) delayed-early K-bZIP promoter contains an ORF50/Rta binding site whose sequence is conserved with the ORF57 promoter. Mutation of the site in the full-length K-bZIP promoter reduced Rta-mediated transactivation by greater than 80%. The K-bZIP element contains an octamer (Oct) binding site that overlaps the Rta site and is well conserved with Oct elements found in the immediate-early promoters of herpes simplex virus type 1(HSV-1). The cellular protein Oct-1, but not Oct-2, binds to the K-bZIP element in a sequence-specific fashion in vitro and in vivo and stimulates Rta binding to the promoter DNA. The coexpression of Oct-1 enhances Rta-mediated transactivation of the wild type but not the mutant K-bZIP promoter, and Oct-1 and Rta proteins bind to each other directly in vitro. Mutations of Rta within an amino acid sequence conserved with HSV-1 virion protein 16 eliminate Rta's interactions with Oct-1 and K-bZIP promoter DNA but not RBP-Jk. The binding of Rta to both Oct-1 and DNA contributes to the transactivation of the K-bZIP promoter and viral reactivation, and Rta mutants deficient for both interactions are completely debilitated. Our data suggest that the Rta/Oct-1 interaction is essential for optimal KSHV reactivation. Transfections of mouse embryo fibroblasts and an endothelial cell line suggest cell-specific differences in the requirement for Oct-1 or RBP-Jk in Rta-mediated transactivation of the K-bZIP promoter. We propose a model in which Rta transactivation of the promoter is specified by the combination of DNA binding and interactions with several cellular DNA binding proteins including Oct-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号