首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanism of arachidonic acid (AA)-induced apoptosis in vascular smooth muscle cells (VSMCs) was studied in the A-10 rat aortic smooth muscle cell line. Treatment of serum-deprived VSMCs with 50 microM AA for 24 h resulted in a loss of cell viability. The apoptotic effect of AA was characterized by annexin V binding, sub-G1 population of cells, cell shrinkage and chromatin condensation. AA-induced VSMC death was attenuated by antioxidants alpha-tocopherol and glutathione, the hydrogen peroxide (H2O2) scavenger catalase and by serum proteins, albumin and gamma globulins. Moreover, the AA peroxidation products, 12(S)-hydroperoxyeicosatetraenoic acid (HPETE), 15(S)-HPETE, 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) caused VSMC apoptosis. These data suggest an oxidative mechanism of AA-induced VSMC death. The apoptotic effect of AA was pH-dependent, being inhibited by extracellular alkalinization to pH 8.0. AA inhibited serum-stimulated cell cycle progression in quiescent cells, but not in proliferating cells. In conclusion, AA, through its oxidation products causes VSMC apoptosis. Antioxidants, by inhibiting VSMC apoptosis, may prevent consequent pathological events such as atherosclerotic plaque rupture.  相似文献   

3.
Unstable atherosclerotic plaques of the carotid arteries are at great risk for the development of ischemic cerebrovascular events. The degradation of the extracellular matrix by matrix metalloproteinases (MMPs) and nitric oxide induced apoptosis of vascular smooth muscle cells (VSMCs) contribute to the vulnerability of the atherosclerotic plaques. Basic fibroblast growth factor (bFGF) through its mitogenic and angiogenic properties has already been implicated in the pathogenesis of atherosclerosis. However, its role in plaque stability remains elusive. To address this issue, a panel of human carotid atherosclerotic plaques was analysed for bFGF, FGF‐receptors‐1 and ‐2 (FGFR‐1/‐2), inducible nitric oxide synthase (iNOS) and MMP‐9 expression. Our data revealed increased expression of bFGF and FGFR‐1 in VSMCs of unstable plaques, implying the existence of an autocrine loop, which significantly correlated with high iNOS and MMP‐9 levels. These results were recapitulated in vitro by treatment of VSMCs with bFGF. bFGF administration led to up‐regulation of both iNOS and MMP‐9 that was specifically mediated by nuclear factor‐κB (NF‐κB) activation. Collectively, our data demonstrate a novel NF‐κB‐mediated pathway linking bFGF with iNOS and MMP‐9 expression that is associated with carotid plaque vulnerability.  相似文献   

4.
Apoptosis of vascular smooth muscle cells (VSMCs) may lead to atherosclerotic plaque instability and rupture, resulting in myocardial infarction, stroke, and sudden death. However, the molecular mechanisms mediating survival of VSMCs in atherosclerotic plaques remain unknown. Although plaque VSMCs exhibit increased susceptibility to apoptosis and reduced expression of the IGF1 receptor (IGF1R) when compared with normal VSMCs, a causative effect has not been established. Here we show that increased expression of the IGF1R can rescue plaque VSMCs from oxidative stress-induced apoptosis, demonstrating that IGF-1 signaling is a critical regulator of VSMC survival. Akt mediates the majority of the IGF1R survival signaling, and ectopic activation of Akt was sufficient to protect VSMCs in vitro. Both IGF1R and phospho-Akt expression were reduced in human plaque (intimal) VSMCs when compared with medial VSMCs, suggesting that Akt mediates survival signaling in atherosclerosis. Importantly, downstream targets of Akt were identified that mediate its protective effect as inhibition of FoxO3a or GSK3 by Akt-dependent phosphorylation protected VSMCs in vitro. We conclude that Akt and its downstream targets FoxO3a and GSK3 regulate a survival pathway in VSMCs and that their deregulation due to a reduction of IGF1R signaling may promote apoptosis in atherosclerosis.  相似文献   

5.
Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.  相似文献   

6.
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria‐mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE?/? mice. Application of ApoE?/? mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3‐methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7‐ketocholesterol (7‐KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase‐9 and caspase‐3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK‐NF‐κB signalling pathway was involved in autophagy modulation of 7‐KC–induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria‐mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.  相似文献   

7.
8.
To evaluate the possible role of ghrelin in the development of atherosclerosis, its effects on tumor necrosis factor (TNF)-alpha-induced proliferation and apoptosis of vascular smooth muscle cells (VSMCs) were investigated. Rat VSMCs were pretreated with different concentrations of ghrelin and then with TNF-alpha. VSMC proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry method. Apoptosis was detected using propidium iodide and Annexin-V labeling method. Exogenous ghrelin (10-1000 ng/ml) significantly inhibited TNF-alpha-induced proliferation of VSMCs in a concentration-dependent manner. Treatment with 1000 ng/ml ghrelin was most effective at inhibiting VSMC proliferation rate and the expression of proliferating cell nuclear antigen. However, treatment with des-acyl ghrelin affected neither proliferation nor PCNA expression. In contrast, TNF-alpha-induced apoptosis of VSMCs was inhibited by both ghrelin and des-acyl ghrelin in concentration-dependent manners, with maximal inhibition observed for both compounds at 1000 ng/ml. Taken together, our results suggested that ghrelin inhibited both the proliferation and apoptosis of rat VSMCs. Furthermore, the former effect is probably mediated by the growth hormone secretagogue receptor type 1a receptor, while the latter effect may be mediated through other receptors.  相似文献   

9.
Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodelling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. Using transgenic mice with selective induction of VSMC apoptosis, a recent study has precisely determined the direct consequences of VSMC apoptosis in both normal vessels and atherosclerotic plaques. Surprisingly, normal arteries can withstand huge cell losses with little change in active or passive properties. Normal vessels demonstrate highly efficient clearance of apoptotic bodies, even in the absence of professional phagocytes. In contrast, VSMC apoptosis alone is sufficient to induce multiple features of vulnerability to rupture in plaques, identifying VSMC apoptosis as a critical process determining plaque stability.  相似文献   

10.
Apoptosis of vascular smooth muscle cell (VSMC) is one of the major pathologic features in atherosclerosis. The platelet-derived growth factor (PDGF) pathway has been shown to provide survival signals in VSMCs and PDGF receptors are also highly expressed in VSMCs contained in the plaques of atherosclerosis. However, the downstream targets of PDGF signaling are unclear. In the current study, we show that PDGF signals stimulate the protein expression of c-Myb in human arterial VSMCs. Inhibition of c-Myb function in VSMCs enhanced apoptosis in PDGF treated VSMCs. Our data suggest that c-Myb functions as a downstream target of the PDGF survival pathway and suggest that c-Myb plays an essential role in adult VSMC survival.  相似文献   

11.
The formation of fat‐laden foam cells, which contributes to the fatty streaks in the plaques of atheromas, is an important process in atherosclerosis. Vascular smooth muscle cells (VSMCs) are a critical origin of foam cells. However, the mechanisms that underlie VSMC foam cell formation are not yet completely understood. Here, we demonstrated that oxidized low‐density lipoprotein (oxLDL) inhibited lipophagy by suppressing lipid droplet (LD)‐lysosome fusion and increased VSMC foam cell formation. Moreover, although oxLDL treatment inhibited lysosomal biogenesis, it had no significant effect on lysosomal proteolysis and lysosomal pH. Notably, through TMT‐based quantitative proteomic analysis and database searching, 94 differentially expressed proteins were identified, of which 54 were increased and 40 were decreased in the oxLDL group compared with those in the control group. Subsequently, SCD1, a protein of interest, was further investigated. SCD1 levels in the VSMCs were down‐regulated by exposure to oxLDL in a time‐dependent manner and the interaction between SCD1 and LDs was also disrupted by oxLDL. Importantly, SCD1 overexpression enhanced LD‐lysosome fusion, increased lysosomal biogenesis and inhibited VSMC foam cell formation by activating TFEB nuclear translocation and its reporter activity. Modulation of the SCD1/TFEB‐mediated lipophagy machinery may offer novel therapeutic approaches for the treatment of atherosclerosis.  相似文献   

12.
Platelet‐derived growth factor (PDGF) can promote vascular smooth muscle cells (VSMCs) to switch from the quiescent contractile phenotype to synthetic phenotype, which contributes to atherosclerosis. We aimed to investigate the role of microRNA let‐7g in phenotypic switching. Bioinformatics prediction was used to find let‐7g target genes in the PDGF/mitogen‐activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal‐regulated kinase (ERK)/Krüppel‐like factor‐4 (KLF4) signalling pathway that affects VSMC phenotypic switching. The luciferase reporter assay and let‐7g transfection were used to confirm let‐7g target genes. Two contractile proteins alpha‐smooth muscle actin (α‐SMA) and calponin were VSMC‐specific genes and were measured as the indicators for VSMC phenotype. Lentivirus carrying the let‐7g gene was injected to apolipoprotein E knockout (apoE?/?) mice to confirm let‐7g's effect on preventing atherosclerosis. Through the PDGF/MEKK1/ERK/KLF4 signalling pathway, PDGF‐BB can inhibit α‐SMA and calponin. The PDGFB and MEKK1 genes were predicted to harbour let‐7g binding sites, which were confirmed by our reporter assays. Transfection of let‐7g to VSMC also reduced PDGFB and MEKK1 levels. Moreover, we showed that let‐7g decreased phosphorylated‐ERK1/2 while had no effect on total ERK1/2. KLF4 can reduce VSMC‐specific gene expression by preventing myocardin–serum response factor (SRF) complex from associating with these gene promoters. The immunoprecipitation assay showed that let‐7g decreased the interaction between KLF4 and SRF. Further experiments demonstrated that let‐7g can increase α‐SMA and calponin levels to maintain VSMC in the contractile status. Injection of lentivirus carrying let‐7g gene increased let‐7g's levels in aorta and significantly decreased atherosclerotic plaques in the apoE?/? mice. We demonstrated that let‐7g reduces the PDGF/MEKK1/ERK/KLF4 signalling to maintain VSMC in the contractile status, which further reduce VSMC atherosclerotic change.  相似文献   

13.
CKD (chronic kidney disease) is a public health problem, mediated by haemodynamic and non‐haemodynamic events including oxidative stress. We investigated the effect of two GSH (glutathione) precursors, NAC (N‐acetylcysteine) and cystine as the physiological carrier of cysteine in GSH with added selenomethionine (F1) in preventing spermine (uraemic toxin)‐induced apoptosis in cultured human aortic VSMC (vascular smooth muscle cells). VSMCs exposed to spermine (15 μM) with or without antioxidants (doses 50, 100, 200 and 500 μg/ml) were assessed for apoptosis, JNK (c‐Jun‐NH2‐terminal kinase) activation and iNOS (inducible nitric oxide synthase) induction and activation of intrinsic pathway signalling. Spermine exposure resulted in activation of JNK and iNOS induction and apoptosis. NAC and F1 (dose range 50–500 μg/ml) attenuated spermine‐induced acceleration of VSMC apoptosis but only F1 (at 200 and 500 μg/ml) maintained spermine‐induced apoptosis at control levels. Spermine‐induced JNK activation was prevented by 200 μg/ml of both NAC and F1, while iNOS induction was blocked only by F1. Notably, the adverse effects of spermine on BAX/BCL‐2 ratio, cytochrome c release and caspase activation was fully attenuated by F1. In conclusion, F1 was more effective than NAC in preventing spermine‐induced apoptosis and downstream changes in related signal transduction pathways in VSMCs. Further studies are needed to examine the effect of these compounds in preventing CKD‐associated vascular disease.  相似文献   

14.
Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia‐induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI‐treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia‐induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.  相似文献   

15.
Morbidity and mortality from atherosclerosis are associated with complicated atherosclerotic lesions due to plaque rupture, which is regulated by a balance between proliferation and apoptosis of vascular smooth muscle cells (VSMC). We examined insulin-like growth factor-1 (IGF-1)-induced survival of plaque VSMC from carotid endarterectomy specimens and investigated the underlying cellular mechanisms in the presence and absence of IL-12 and IFN-gamma. Both IL-12 and IFN-gamma were strongly expressed in symptomatic atherosclerotic plaques as compared with asymptomatic plaques. In asymptomatic plaque VSMC, IGF-1 induced the survival and proliferation of VSMC and accelerated VSMC into S-phase. IL-12 or IFN-gamma inhibited proliferation and VSMC were arrested in the G0-G1 phase. IGF-1 markedly inhibited the expression of p27(kip) and p21(cip) and significantly induced cyclin E and cyclin D. Both cytokines by themselves increased the expression of p27(kip) and p21(cip) and inhibited cyclin E and cyclin D. On the contrary, in symptomatic VSMC there was already increased apoptosis of VSMC and there was no significant effect of IGF-1 or inflammatory cytokines on proliferation, apoptosis or the expression of p27(kip) and p21(cip) and cyclin D and E. These data suggest that IGF-1 is more potent in inducing the survival of VSMC from the endarterectomy specimens of asymptomatic patients as compared to that of symptomatic subjects and cytokines associated with atheroma lesions decrease the activity of IGF-1-induced survival in the VSMC of asymptomatic plaques. The different expression and activity of cell cycle regulatory proteins could be responsible for apoptosis of VSMC and destabilization of atherosclerotic plaques.  相似文献   

16.
Apatinib (YN968D1) is a small‐molecule tyrosine kinase inhibitor(TKI)which can inhibit the activity of vascular endothelial growth factor receptor‐2 (VEGFR‐2). It has been reported that apatinib has anti‐tumour effect of inhibiting proliferation and inducing apoptosis of a variety of solid tumour cells, whereas its effect on vascular smooth muscle cells (VSMC) remains unclear. This study investigated the effect of apatinib on phenotypic switching of arterial smooth muscle cells in vascular remodelling. Compared to the vehicle groups, mice that were performed carotid artery ligation injury and treated with apatinib produced a reduction in abnormal neointimal area. For in vitro experiment, apatinib administration inhibited VSMC proliferation, migration and reversed VSMC dedifferentiation with the stimulation of platelet‐derived growth factor type BB (PDGF‐BB).In terms of mechanism, with the preincubation of apatinib, the activations of PDGF receptor‐β (PDGFR‐β) and phosphoinositide‐specific phospholipase C‐γ1 (PLC‐γ1) induced by PDGF‐BB were inhibited in VSMCs. With the preincubation of apatinib, the phosphorylation of PDGFR‐β, extracellular signal‐related kinases (ERK1/2) and Jun amino‐terminal kinases (JNK) induced by PDGF‐BB were also inhibited in rat vascular smooth muscle cell line A7r5. Herein, we found that apatinib attenuates phenotypic switching of arterial smooth muscle cells induced by PDGF‐BB in vitro and vascular remodelling in vivo. Therefore, apatinib is a potential candidate to treat vascular proliferative diseases.  相似文献   

17.
18.
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high‐fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up‐regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1‐forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria‐dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.  相似文献   

19.
Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-kappaB-mediated survival signaling. Following chymase treatment, the translocation of active NF-kappaB/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1beta-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-kappaB-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-kappaB-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques.  相似文献   

20.
gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells   总被引:8,自引:0,他引:8  
gp38k (CHI3L1) is a secreted heparin-binding glycoprotein whose expression, in vitro, is associated with vascular smooth muscle cell (VSMC) migration and invasion into the underlying gelatinous matrix. gp38k is expressed at high levels in postconfluent "nodular" VSMC cultures and at low levels in subconfluent proliferating cultures. In vivo, expression of gp38k homologs is high in regions of tissue remodeling and now has been detected in atherosclerotic plaques and in the developing heart. We tested the hypothesis that gp38k functions to modulate VSMC adhesion and migration. By use of modified Boyden chambers, gp38k at a concentration as low as 1 ng/ml has profound effects on VSMC migration but little or no effect on fibroblast migration. In addition, gp38k adsorbed to polystyrene surfaces directly promotes VSMC attachment and spreading. Attachment is inhibited in the presence of affinity-purified anti-gp38k or 10 mM EDTA. These results establish that gp38k is a new vascular cell adhesion and migration factor that may have a role in processes leading to vascular occlusion and heart development. gp38k may interact with VSMC via an EDTA-sensitive mechanism consistent with integrin mediated cell-matrix interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号