首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
From approximately 1000 papers with data on protein polymorphism in some 216 breeds of cattle, 10 polymorphic proteins were compared in means and variances of gene frequencies (arcsin p½) for ten well-recognized breed groups for 196 of the breeds. The polymorphic proteins were α-lactalbumin, β-lactoglobulin, caseins (αsl, β and x), serum albumin, transferrin, haemoglobin, amylase I and carbonic anhydrase II. The breed groups were North European, Pied Lowland, European Red brachyceros, Channel Island brachyceros, Upland brachyceros, primigenius-brachyceros mixed, primigenius, Indian Zebu, African Humped (with Zebu admixture), and African Humped (Sanga).
The coherence within groups and the differences between groups are often impressive. Only carbonic anhydrase II fails to differentiate at least some of the major breed groups.
In some cases paradoxical distributions of rare genetic variants can be explained by a more detailed inspection of breed history.
The chemical data support the morphological and geographical divisions of cattle into major breed groups. There are three distinct but related brachyceros groups; for some polymorphisms the two Channel Island breeds, the Jersey and the Guernsey, are quite divergent. Although some authorities have considered the Pied Lowland as primigenius, it is a very distinct breed group.  相似文献   

2.
From approximately 1000 papers with data on protein polymorphism in some 216 breeds of cattle, 10 polymorphic proteins were compared in means and variances of gene frequencies (arcsin p 1/2) for ten well-recognized breed groups for 196 of the breeds. The polymorphic proteins were alpha-lactalbumin, beta-lactoglobulin, caseins (alpha s1, beta and chi), serum albumin, transferrin, haemoglobin, amylase I and carbonic anhydrase II. The breed groups were North European, Pied Lowland, European Red brachyceros, Channel Island brachyceros, Upland brachyceros, primigenius-brachyceros mixed, primigenius, Indian Zebu, African Humped (with Zebu admixture), and African Humped (Sanga). The coherence within groups and the differences between groups are often impressive. Only carbonic anhydrase II fails to differentiate at least some of the major breed groups. In some cases paradoxical distributions of rare genetic variants can be explained by a more detailed inspection of breed history. The chemical data support the morphological and geographical divisions of cattle into major breed groups. There are three distinct but related brachyceros groups; for some polymorphisms the two Channel Island breeds, the Jersey and the Guernsey, are quite divergent. Although some authorities have considered the Pied Lowland as primigenius, it is a very distinct breed group.  相似文献   

3.
Methods of phylogenetic analysis were used to study the relationships of ten Central European cattle breeds using gene frequencies at eleven blood group and protein polymorphism loci. The results show remarkable agreement with historical and geographical relationships, but are different from the relationships postulated earlier in the century from studies of skull shape. Lowland cattle of Northern Germany are distinct from the West Alpine breeds, but the Pustertaler and Pinzgauer breeds from the Eastern Alps are more closely related to those lowland breeds than to the other Alpine breeds, suggesting they were brought from the North by Germanic settlers in the early Middle Ages. Thus, a sharp distinction between lowland cattle and all Alpine breeds seems unwarranted. Moreover, we find no evidence to justify a unique taxonomic position for Pustertaler, nor do we find any evidence that Spanish cattle might have influenced the Pinzgau. We find a close genetic relationship of the Murbodner breed to the Fleckvieh (Simmenthal) breeds that is not supported by any known historical relationship; it may indicate a little-known human migration.  相似文献   

4.
Mao Y  Chang H  Yang Z  Zhang L  Xu M  Sun W  Chang G  Song G 《Biochemical genetics》2007,45(3-4):195-209
Levels of genetic differentiation, gene flow, and genetic structure of three indigenous cattle populations (Luxi, Bohai, and Minnan) and two reference cattle populations (Chinese Holstein and Qinhai yak) in China were estimated using the information from 12 microsatellites, and 141 microsatellite alleles were identified. The mean number of alleles per locus ranged from 2.9005 in yak to 4.9722 in Holstein. The observed heterozygosity ranged from 0.5325 (yak) to 0.7719 (Holstein); 29 private alleles were detected. The global heterozygote deficit across all populations amounted to 58.5% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 43.2%. The five cattle populations were highly differentiated (F st = 26.9%, p < 0.001) at all loci. The heterozygote deficit within the population was highest in Luxi cattle and lowest in yak. The average number of effective migrants exchanged per generation was highest (1.149) between Luxi and Holstein, and lowest (0.509) between Luxi and yak. With the application of prior population information, cluster analysis achieved posterior probabilities from 91% to 98% of correctly assigning individuals to populations. Combining the information of cluster analysis, gene flow, and Structure analysis, the five cattle populations belong to three genetic clusters, a taurine (Luxi and Chinese Holstein), a zebu (Bohai and Minnan), and a yak cluster. This indicates that Bohai black is closer to Bos indicus than Luxi cattle. The evolution and development of three indigenous cattle populations are discussed.  相似文献   

5.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

6.
PCR–SSCP and DNA sequencing methods were employed to screen the genetic variation of vascular endothelial growth factor (VEGF) gene in 675 individuals belonging to three Chinese indigenous cattle breeds including Qinchuan (QC), Jiaxian Red (JX) and Nanyang (NY) breed. Three new single nucleotide polymorphisms (SNPs) (g.6765T > C ss130456744, g.6860A > G ss130456745, g.6893T > C ss130456746) were found. One SNP (g.6765T > C) was detected in intron II of VEGF gene in all three breeds and the other two SNPs (g.6860A > G, g.6893T > C) were in exon III of VEGF gene only in NY breed. Among them, two synonymous mutations of exon III were identified: CCA (Pro) > CCG (Pro) at position 65th amino acid (aa) and TGT (Cys) > TGC (Cys) at position 76th aa of VEGF(190aa) in NY breed. Our study revealed that NY breed exhibited the most abundant genetic diversity in VEGF gene within the three cattle breeds. Furthermore, JX cattle breed was more similar to QC breed than to NY breed. Our genetic data in the present study supported the hypothesis that the distribution pattern of Chinese indigenous cattle breeds was closely related to the geographical and climatic background again.  相似文献   

7.
β-defensins are small cationic peptides, with potent immunoregulatory and antimicrobial activity which are produced constitutively and inducibly by eukaryotic cells. This study profiles the expression of a cluster of 19 novel defensin genes which spans 320 kb on chromosome 13 in Bos taurus. It also assesses the genetic variation in these genes between two divergently selected cattle breeds. Using quantitative real-time PCR (qRT-PCR), all 19 genes in this cluster were shown to be expressed in the male genital tract and 9 in the female genital tract, in a region-specific manner. These genes were sequenced in Norwegian Red (NR) and Holstein-Friesian (HF) cattle for population genetic analysis. Of the 17 novel single nucleotide polymorphisms (SNPs) identified, 7 were non-synonymous, 6 synonymous and 4 outside the protein coding region. Significant frequency differences in SNPs in bovine β-defensins (BBD) 115, 117, 121, and 122 were detected between the two breeds, which was also reflected at the haplotype level (P < 0.05). There was clear segregation of the haplotypes into two blocks on chromosome 13 in both breeds, presumably due to historical recombination. This study documents genetic variation in this β-defensin gene cluster between Norwegian Red and Holstein-Friesian cattle which may result from divergent selection for production and fertility traits in these two breeds. Regional expression in the epididymis and fallopian tube suggests a potential reproductive-immunobiology role for these genes in cattle.  相似文献   

8.
Variation in the XK, Kell blood group complex subunit–related family, member 4 (XKR4) gene on BTA14 was associated with rump fat thickness in a recent genome‐wide association study. This region is also of interest because it is known to show evidence of a signature of population genetic selection. In this study, additional variation in this gene was genotyped in a sample of a total of 1283 animals of the Belmont Red (BEL) and Santa Gertrudis (SGT) breeds. The SNP rs41724387 was significantly (P < 0.001) associated with rump fat thickness and explained 5.9% of the genetic variance for the trait in this sample. Using the 4466 genotypes for the SNP rs42646708 from several data sets to estimate effects in seven breeds, this relatively large quantitative trait locus effect appears to be a result of the variation in indicine and taurine–indicine composite cattle. However, the only DNA variant found in Brahman cattle that altered the predicted amino acid sequence of XKR4 was not associated with rump fat thickness. This suggests that causative mutations lie outside the coding sequence of this gene.  相似文献   

9.
Genotype data from 30 microsatellites were used to assess genetic diversity and relationships among 10 native Portuguese cattle breeds, American Charolais and the Brazilian Caracú. Hardy–Weinberg equilibrium was observed for all loci/population combinations except for five loci in Brava de Lide and one locus in Alentejana that exhibited heterozygote deficiency. Estimates of average observed and expected heterozygosities, total number of alleles (TNA) per breed and mean number of alleles (MNA) per locus/population were obtained. A total of 390 alleles were detected. TNA among Iberian cattle ranged from 170 to 237 and MNA ranged from 5.67 to 8.07. The highest observed heterozygosities were found in the Caracú, Maronesa, Garvonesa and Arouquesa and the lowest in Brava de Lide and Mirandesa. Estimation of population subdivision using Wright's FST index showed that the average proportion of genetic variation explained by breed differences was 9%. Neighbour‐joining phylogenetic trees based on DA distances showed that the genetic relationships of present‐day Portuguese native breeds are consistent with historical origins in the Brown Concave (Arouquesa, Mirandesa, Marinhoa) and Red Convex (Mertolenga, Alentejana, Garvonesa, Minhota) evolutionary groups. The Iberian Black Orthoide group, represented by Brava de Lide and Maronesa, and the Barrosã breed appeared to be more closely related to the Brown Concave group but may represent a separate lineage. The Caracú breed was not found to be closely associated with any of the native Portuguese breeds.  相似文献   

10.
The present study intends to survey the genetic variability of an endangered semiferal Portuguese native pony breed, the Garrano. Thirteen microsatellite markers were examined in 277 animals born in 1998, belonging to eight subpopulations corresponding to eight northern Portuguese geographic regions. Mean heterozygosity (Ho) in the Garrano breed was 0.732, ranging from 0.531 to 0.857 across subpopulations. Allelic frequencies and diversity differed significantly between regions, suggesting the existence of genetic differentiation within the breed confirmed by the population differentiation estimator FST. Allele sharing genetic distance (Dps) was used to determine the relationship between the analyzed subpopulations, some of which are diverging significantly from the others. Relationships among six Iberian horse breeds (including the Garrano) were assessed through the restricted maximum likelihood method, which clusters the Garrano with another Celtic pony, the Spanish Asturcon, traditionally bred in geographical continuity with the Garrano. Results reveal a statistically significant deficit of heterozygotes within the Garrano breed (FIT = 0.031, p < 0.05). Regular monitoring should therefore be implemented so that the effect of genetic drift within subpopulations, enhanced by inbreeding, may be successfully minimized.  相似文献   

11.
Elucidation of genetic variability and genetic relationship among breeds has direct relevance with the issues of sustainable use of domestic animal genetic resources. In the present study, genetic polymorphism was evaluated using 22 microsatellite loci in unrelated samples of Red Kandhari and Deoni cattle breeds inhabiting the same geographical area of Marathwada region in Maharashtra state (western India). This work was mainly aimed at assessing the current genetic diversity to understand whether the two zebu populations in question are genetically differentiated. A total of 164 alleles were detected with an average of 5.82 and 5.86 alleles per locus (MNA) in Red Kandhari and Deoni breeds, respectively. The estimated mean observed (Ho) and expected (He) heterozygosity were 0.47 and 0.64 in Red Kandhari vs. 0.57 and 0.69 in Deoni cattle, respectively, demonstrating considerable level of genetic variation in both the populations. Mean estimates of F statistics were: F (FIT) = 0.315±0.035, f(FIS) = 0.231±0.031, θ(FST) = 0.110±0.022, with both the breeds exhibiting significant deficit of heterozygotes (FIS = 0.179 in Deoni; 0.278 in Red Kandhari). The multilocus FST values implied that 11.0% of the total genetic variation corresponds to breed and were statistically greater than zero for the two populations, suggesting population division. The evaluation of exact test also indicated that allele frequencies across all the loci differed significantly (P < 0.001) between two zebu breeds, further supporting population differentiation. Different genetic distance measures showed considerable levels of distances between the two cattle breeds (0.318 = Nei's standard DS; 0.250 = Nei's DA; 0.416 = Cavalli-Sforza and Edwards's DC; 0.164 = Reynold's, and 2.64 = Delta mu square (dμ)2. Bayesian statistical approach to assign each individual to the population also supported considerable differentiation between the two cattle breeds, possibly reflecting the limited gene flow between the two Marthwada cattle populations. The existence of cohesive breeding structure of both the breeds was further substantiated by allele-sharing distance measures (DAS) among individual animals. The results of this study thus revealed that the two Bos indicus breeds sharing the common breeding tracts are genetically differentiated enough as separate breeds.  相似文献   

12.
Geographical partitioning of goat diversity in Europe and the Middle East   总被引:1,自引:0,他引:1  
Thirty microsatellite markers were analysed in 1426 goats from 45 traditional or rare breeds in 15 European and Middle Eastern countries. In all populations inbreeding was indicated by heterozygosity deficiency (mean FIS = 0.10). Genetic differentiation between breeds was moderate with a mean FST value of 0.07, but for most (c. 71%) northern and central European breeds, individuals could be assigned to their breeds with a success rate of more than 80%. Bayesian-based clustering analysis of allele frequencies and multivariate analysis revealed at least four discrete clusters: eastern Mediterranean (Middle East), central Mediterranean, western Mediterranean and central/northern Europe. About 41% of the genetic variability among the breeds could be explained by their geographical origin. A decrease in genetic diversity from the south-east to the north-west was accompanied by an increase in the level of differentiation at the breed level. These observations support the hypothesis that domestic livestock migrated from the Middle East towards western and northern Europe and indicate that breed formation was more systematic in north-central Europe than in the Middle East. We propose that breed differentiation and molecular diversity are independent criteria for conservation.  相似文献   

13.
L. Ming  L. Yi  R. Sa  Z. X. Wang  Z. Wang  R. Ji 《Animal genetics》2017,48(2):217-220
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.  相似文献   

14.
Using frequencies of 86 genes from 23 loci of blood group systems, blood and milk proteins, the genetic relationships among 14 cattle breeds including four native Balkan and four synthetic Balkan-Alp breeds were studied. The dendrogram and nonlinear map construction shows a consensus ‘Balkan breed cluster’, an ‘Alp breed cluster’, an unstable position of synthetic breeds and well-separated American breeds. Positive partial correlations between genetic distance and time elapsed since introduction of farming while keeping geographical distances constant, and regular patterns over thousands of kilometres indicate that large-scale cattle population movements together with human migration (in the Neolithic age) from the Near East into Europe across the Balkans are the most likely explanation for the genetic distances observed in our data. More recent breed differentiation and selection do not yet blur this initial pattern of European cattle populations.  相似文献   

15.
16.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

17.
Genetic variability and genetic relationships were investigated among eight Chinese cattle breeds using 12 microsatellite markers. Three hundred and fifty-two alleles were detected and the average number of alleles per locus ranged from 8.33 ± 1.67 in the Jiaxian breed to 21.33 ± 5.60 in the Qinchuan breed with a mean value of 13.91. The total number of alleles per microsatellite ranged from 21 (INRA005, HEL1) to 40 (HEL13), with a mean of 29.33 per locus. The fixation indices at the 12 loci in the eight breeds were very low with a mean of 0.006. A principal components analysis and the construction of a neighborjoining tree showed that these eight Chinese cattle breeds cluster into three groups i.e. the Yanbian andChineseHolstein, theNanyang and Jiaxian, and the four remaining breeds.This clustering agrees with the origin and geographical distributions of these Chinese breeds.  相似文献   

18.
This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P < 0.01). Five different genetic distances were computed and compared with no correlation found to be significantly different from 0 between distances based on the effective size of the population and those which use the size of the alleles. The Weitzman recursive approach and a multivariate analysis were used to measure the contribution of the breeds diversity. The Weitzman approach suggests that the most important breeds to be preserved are those grouped into two clusters: the cluster formed by the Mirandesa and Alistana breeds and that of the Sayaguesa and Tudanca breeds. The hypothetical extinction of one of those clusters represents a 17% loss of diversity. A correspondence analysis not only distinguished four breed groups but also confirmed results of previous studies classifying the important breeds contributing to diversity. In addition, the variation between breeds was sufficiently high so as to allow individuals to be assigned to their breed of origin with a probability of 99% for simulated samples.  相似文献   

19.
The allelic variants of immunity genes in historical breeds likely reflect local infection pressure and therefore represent a reservoir for breeding. Screening to determine the diversity of the Toll-like receptor gene TLR4 was conducted in two conserved cattle breeds: Czech Red and Czech Red Pied. High-throughput sequencing of pooled PCR amplicons using the PacBio platform revealed polymorphisms, which were subsequently confirmed via genotyping techniques. Eight SNPs found in coding and adjacent regions were grouped into 18 haplotypes, representing a significant portion of the known diversity in the global breed panel and presumably exceeding diversity in production populations. Notably, the ancient Czech Red breed appeared to possess greater haplotype diversity than the Czech Red Pied breed, a Simmental variant, although the haplotype frequencies might have been distorted by significant crossbreeding and bottlenecks in the history of Czech Red cattle. The differences in haplotype frequencies validated the phenotypic distinctness of the local breeds. Due to the availability of Czech Red Pied production herds, the effect of intensive breeding on TLR diversity can be evaluated in this model. The advantages of the Pacific Biosciences technology for the resequencing of long PCR fragments with subsequent direct phasing were independently validated.  相似文献   

20.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号