首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Human histone demethylase LSD1 is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. The N-terminal tail of H3 is subject to various covalent modifications, and a fundamental question in LSD1 biology is how these epigenetic marks affect the demethylase activity. We show that LSD1 does not have a strong preference for mono- or dimethylated Lys4 of H3. Substrate recognition is not confined to the residues neighboring Lys4, but it requires a sufficiently long peptide segment consisting of the N-terminal 20 amino acids of H3. Electrostatic interactions are an important factor in protein-substrate recognition, as indicated by the high sensitivity of Km to ionic strength. We have probed LSD1 for its ability to demethylate Lys4 in presence of a second modification on the same peptide substrate. Methylation of Lys9 does not affect enzyme catalysis. Conversely, Lys9 acetylation causes an almost 6-fold increase in the Km value, whereas phosphorylation of Ser10 totally abolishes activity. LSD1 is inhibited by a demethylated peptide with an inhibition constant of 1.8 microM, suggesting that LSD1 can bind to H3 independently of Lys4 methylation. LSD1 is a chromatin-modifying enzyme, which is able to read different epigenetic marks on the histone N-terminal tail and can serve as a docking module for the stabilization of the associated corepressor complex(es) on chromatin.  相似文献   

7.
8.
9.
10.
11.
The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila.  相似文献   

12.
13.
14.
Histone methylation has a key role in oestrogen receptor (ERα)‐mediated transactivation of genes. Proline glutamic acid and leucine‐rich protein 1 (PELP1) is a new proto‐oncogene that functions as an ERα co‐regulator. In this study, we identified histone lysine demethylase, KDM1, as a new PELP1‐interacting protein. These proteins, PELP1 and KDM1, were both recruited to ERα target genes, and PELP1 depletion affected the dimethyl histone modifications at ERα target genes. Dimethyl‐modified histones H3K4 and H3K9 are recognized by PELP1, and PELP1 alters the substrate specificity of KDM1 from H3K4 to H3K9. Effective demethylation of dimethyl H3K9 by KDM1 requires a KDM1–ERα–PELP1 functional complex. These results suggest that PELP1 is a reader of H3 methylation marks and has a crucial role in modulating the histone code at the ERα target genes.  相似文献   

15.
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.  相似文献   

16.
17.
Ulucan O  Keskin O  Erman B  Gursoy A 《PloS one》2011,6(9):e24664
Histone modifications have great importance in epigenetic regulation. JMJD2A is a histone demethylase which is selective for di- and trimethyl forms of residues Lys9 and Lys36 of Histone 3 tail (H3K9 and H3K36). We present a molecular dynamics simulations of mono-, di- and trimethylated histone tails in complex with JMJD2A catalytic domain to gain insight into how JMJD2A discriminates between the methylation states of H3K9. The methyl groups are located at specific distances and orientations with respect to Fe(II) in methylammonium binding pocket. For the trimethyllysine the mechanism which provides the effectual orientation of methyl groups is the symmetry, whereas for the dimethyllysine case the determining factors are the interactions between methyllysine head and its environment and subsequently the restriction on angular motion. The occurrence frequency of methyl groups in a certain proximity of Fe(II) comes out as the explanation of the enzyme activity difference on di- and tri-methylated peptides. Energy analysis suggests that recognition is mostly driven by van der Waals and followed by Coulombic interactions in the enzyme-substrate interface. The number (mono, di or tri) and orientations of methyl groups and water molecules significantly affect the extent of van der Waals interaction strengths. Hydrogen bonding analysis suggests that the interaction between JMJD2A and its substrates mainly comes from main chain-side chain interactions. Binding free energy analysis points out Arg8 as an important residue forming an intra-substrate hydrogen bond with tri and dimethylated Lys9 of the H3 chain. Our study provides new insights into how JMJD2A discriminates between its substrates from both a structural and dynamical point of view.  相似文献   

18.
The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin.  相似文献   

19.
Human lysine-specific demethylase (LSD1) is a chromatin-modifying enzyme that specifically removes methyl groups from mono- and dimethylated Lys4 of histone H3 (H3-K4). We used a combination of in vivo and in vitro experiments to characterize the substrate specificity and recognition by LSD1. Biochemical assays on histone peptides show that essentially all epigenetic modifications on the 21 N-terminal amino acids of histone H3 cause a significant reduction in enzymatic activity. Replacement of Lys4 with Arg greatly enhances binding affinity, and a histone peptide incorporating this mutation has a strong inhibitory power. Conversely, a peptide bearing a trimethylated Lys4 is only a weak inhibitor of the enzyme. Rapid kinetics measurements evidence that the enzyme is efficiently reoxidized by molecular oxygen with a second-order rate constant of 9.6x10(3) M-1 s-1, and that the presence of the reaction product does not greatly influence the rate of flavin reoxidation. In vivo experiments provide a correlation between the in vitro inhibitory properties of the tested peptides and their ability of affecting endogenous LSD1 activity. Our results show that epigenetic modifications on histone H3 need to be removed before Lys4 demethylation can efficiently occur. The complex formed by LSD1 with histone deacetylases 1/2 may function as a "double-blade razor" that first eliminates the acetyl groups from acetylated Lys residues and then removes the methyl group from Lys4. We suggest that after H3-K4 demethylation, LSD1 recruits the forthcoming chromatin remodelers leading to the introduction of gene repression marks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号