首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Runx2: of bone and stretch   总被引:4,自引:0,他引:4  
  相似文献   

3.
Fibrosis is characterized by elevated transforming growth factor β (TGFβ) signaling, resulting in extracellular matrix accumulation and increased PAI-1 (plasminogen activator inhibitor) expression. PAI-1 induces the internalization of urokinase plasminogen activator/receptor and integrin αvβ3 from the cell surface. Since increased αvβ3 expression correlates with increased TGFβ signaling, we hypothesized that aberrant PAI-1-mediated αvβ3 endocytosis could initiate an autocrine loop of TGFβ activity. We found that in PAI-1 knock-out (KO) mouse embryonic fibroblasts), αvβ3 endocytosis was reduced by ∼75%, leaving αvβ3 in enlarged focal adhesions, similar to wild type cells transfected with PAI-1 small interfering RNA. TGFβ signaling was significantly enhanced in PAI-1 KO cells, as demonstrated by a 3-fold increase in SMAD2/3-containing nuclei and a 2.9-fold increase in TGFβ activity that correlated with an increase in αvβ3 and TGFβ receptor II expression. As expected, PAI-1 KO cells had unregulated plasmin activity, which was only partially responsible for TGFβ activation, as evidenced by a mere 25% reduction in TGFβ activity when plasmin was inhibited. Treatment of cells with an αvβ3-specific cyclic RGD peptide (GpenGRGD) led to a more profound (59%) TGFβ inhibition; a nonspecific RGD peptide (GRGDNP) inhibited TGFβ by only 23%. Human primary fibroblasts were used to confirm that PAI-1 inhibition and β3 overexpression led to an increase in TGFβ activity. Consistent with a fibrotic phenotype, PAI-1 KO cells were constitutively myofibroblasts that had a 1.6-fold increase in collagen deposition over wild type cells. These data suggest that PAI-1-mediated regulation of αvβ3 integrin is critical for the control of TGFβ signaling and the prevention of fibrotic disease.Fibrotic disorders can result from environmental toxins, persistent infection, autoimmune disease, or mechanical injury, leading to the hardening and scarring of tissues. In fibrotic diseases, such as liver cirrhosis, renal fibrosis, and idiopathic lung fibrosis, or in pathological wound healing, such as hypertrophic scarring, scleroderma, and Dupuytren disease, the persistence of myofibroblasts contributes to disease progression by overproduction of extracellular matrix (ECM)2 and by excessive contraction (13). A shift in the balance of growth factors and cytokines that promote ECM deposition and proteases that degrade matrix often contributes to fibrotic disease (4, 5). Plasmin, a broad spectrum protease that is generated from plasminogen by uPA, is one of the proteases that degrades matrix and activates growth factors and other proteases (6). Since uPA activity is inhibited by PAI-1, the overexpression of PAI-1 results in matrix accumulation. For this reason, PAI-1 is a key prognostic marker for fibrotic disease. PAI-1 exerts its inhibitory activity on uPA by stimulating the endocytosis of the cell surface uPA·uPAR complex through the low density lipoprotein receptor-related protein (7). Integrin αvβ3 is also internalized with the uPA·uPAR·low density lipoprotein receptor-related protein complex (8). After endocytosis, uPAR and integrins are recycled back to the cell surface for another round of binding (8, 9). uPAR and αvβ3 promote cellular attachment and spreading, since they are receptors for the extracellular matrix molecule, vitronectin (10). Thus, cycling of the complex is thought to stimulate the attachment and detachment that is necessary for cell migration (8). Consequently, a shift in the expression of any of these components (PAI-1/uPA/uPAR/αvβ3) can result in either aggressive migration, as seen in cancer invasion, or a persistent increase in cell adhesion and cell tension, as seen in myofibroblasts in fibrotic tissue.The family of TGFβ growth factors has been intensively studied for their role in fibrotic wound healing. Up-regulation of TGFβ results in amplified and persistent overproduction of molecules, such as integrins and PAI-1 and other protease inhibitors (e.g. TIMPs) (2, 3). Up-regulated integrins continue the cycle of TGFβ signaling by participating in the sustained activation of TGFβ from its latent form. To date, studies have found that various αv integrins participate in the activation of TGFβ (αvβ3, αvβ5, αvβ6, and αvβ8), but the mechanism differs (1115). Integrins can serve as docking proteins to localize proteases that cleave and activate latent TGFβ in the ECM, or they can directly activate latent TGFβ in a protease-independent manner. Recently, it was discovered that latent TGFβ is also activated by mechanical stress generated from an integrin-mediated interaction between myofibroblasts and the ECM, primarily involving αvβ5. The mechanical stress promotes a conformational change that activates the latent TGFβ complex (15). αv integrins also modulate TGFβ signaling through the binding of αvβ3 to TGFβ receptor II (TGFβRII) in the presence of TGFβ. This interaction was shown to promote a dramatic increase in the proliferation of lung fibroblasts and induce invasion of epithelial breast cancer cells (16, 17).Our data establish a role for the PAI-1-mediated control of αvβ3 expression and support a significant role for αvβ3 in TGFβ signaling. Using PAI-1 KO cells, we tested the hypothesis that the absence of PAI-1 would result in the accumulation of αvβ3 on the cell surface, since PAI-1 promotes the endocytosis of uPA·uPAR·αvβ3. PAI-1-mediated endocytosis of β3 was significantly reduced in the PAI-1 KO cells. Correspondingly, we report that β3 accumulated at the cell surface in enlarged β3-containing focal adhesions. Thus, we explored whether the accumulation of αvβ3 on the cell surface had fibrogenic effects even in the absence of profibrotic PAI-1. Our results demonstrate dramatically increased TGFβ activity and an increase in collagen expression in PAI-1 KO cells. Together, these findings suggest that PAI-1 modulates β3 expression and localization and, in turn, TGFβ signaling. Our data reveal that maintaining precise levels of PAI-1 is a key to preventing fibrosis. Understanding the consequence of regulating PAI-1 activity is critical in light of the many clinical therapies currently under development that target PAI-1 (18, 19).  相似文献   

4.
Calcineurin is an important signalling protein that regulates a number of molecular and cellular processes. Previously, we found that inhibition of calcineurin with cyclosporine reduced renal hypertrophy and blocked glomerular matrix expansion in the diabetic kidney. Isoforms of the catalytic subunit of calcineurin are reported to have tissue specific expression and functions. In particular, the β isoform has been implicated in cardiac and skeletal muscle hypertrophy. Therefore, we examined the role of calcineurin β in diabetic renal hypertrophy and glomerular matrix expansion. Type I diabetes was induced in wild-type and β−/− mice and then renal function, extracellular matrix expansion and hypertrophy were evaluated. The absence of β produced a significant decrease in total calcineurin activity in the inner medulla (IM) and reduced nuclear factor of activated T-cells (NFATc) activity. Loss of β did not alter diabetic renal dysfunction assessed by glomerular filtration rate, urine albumin excretion and blood urea nitrogen. Similarly, matrix expansion in the whole kidney and glomerulus was not different between diabetic wild-type and β−/− mice. In contrast, whole kidney and glomerular hypertrophy were significantly reduced in diabetic β−/− mice. Moreover, β−/− renal fibroblasts demonstrated impaired phosphorylation of Erk1/Erk2, c-Jun N-terminal kinases (JNK) and mammalian target of rapamycin (mTOR) following stimulation with transforming growth factor-β and did not undergo hypertrophy with 48 hrs culture in high glucose. In conclusion, loss of the β isoform of calcineurin is sufficient to reproduce beneficial aspects of cyclosporine on diabetic renal hypertrophy but not matrix expansion. Therefore, while multiple signals appear to regulate matrix, calcineurin β appears to be a central mechanism involved in organ hypertrophy.  相似文献   

5.
6.
Transforming growth factor β1 (TGFβ) inhibits cellular proliferation, promotes differentiation, and stimulates the expression and secretion of the extracellular matrix adhesion molecules fibronectin and laminin and the colon-associated intercellular adhesion molecule carcinoembryonic antigen. This is collectively called the TGFβ-mediated adhesion response and occurs in the human colon cancer cell line Moser while the cell line KM12SM is relatively unresponsive to TGFβ. We have previously shown that TGFβ rapidly stimulates protein kinase C (PKC) phosphotransferase activity in the Moser cells and that the induction of the adhesion response (but not antiproliferation) by TGFβ is dependent on PKC. Because resistance to growth factors may be due to translational suppression and the translation initiation factor eIF-4E may alleviate translational suppression, we determined the effect of eIF-4E expression on the responses of Moser and KM12SM cells to TGFβ. Ectopic expression of eIF-4E in the TGFβ-responsive Moser cells enhanced the activation of PKC by TGFβ and the induction of the adhesion response, especially the secretion of adhesion molecules, but not the antiproliferative response. Ectopic expression of eIF-4E in the TGFβ-resistant KM12SM cells increased TGFβ stimulation of PKC and the TGFβ-mediated adhesion response (but not antiproliferation). The secretion of adhesion molecules was significantly increased by TGFβ. These results showed in these cells that eIF-4E promotes TGFβ-regulated adhesion but not antiproliferation in a PKC-dependent manner.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) expression in acute promyelocytic leukemia (APL) impairs transforming growth factor beta (TGFβ) signaling, leading to cell growth advantage. Halofuginone (HF), a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG). Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001) and induced apoptosis (P = 0.002) after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21) and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.  相似文献   

14.
15.
We compared the osteoblastic differentiation abilities of dedifferentiated fat cells (DFATs) and human bone marrow mesenchymal stem cells (hMSCs) as a cell source for bone regeneration therapies. In addition, the utility of DFATs in bone tissue engineering in vitro was assessed by an alpha-tricalcium phosphate (α-TCP)/collagen sponge (CS). Human DFATs were isolated from the submandibular of a patient by ceiling culture. DFATs and hMSCs at passage 3 were cultured in control medium or osteogenic medium (OM) for 14 days. Runx2 gene expression, alkaline phosphatase (ALP) activity, as well as osteocalcin (OCN) and calcium contents were analyzed to evaluate the osteoblastic differentiation ability of both cell types. DFATs seeded in a α-TCP/CS and cultured in OM for 14 days were analyzed by scanning electron microscopy (SEM) and histologically. Compared with hMSCs, DFATs cultured in OM generally underwent superior osteoblastogenesis by higher Runx2 gene expression at all days tested, as well as higher ALP activity at day 3 and 7, OCN expression at day 14, and calcium content at day 7. In SEM analyses, DFATs seeded in a α-TCP/CS were well spread and covered the α-TCP/CS by day 7. In addition, numerous spherical deposits were found to almost completely cover the α-TCP/CS on day 14. Von Kossa staining showed that DFATs differentiated into osteoblasts in the α-TCP/CS and formed cultured bone by deposition of a mineralized extracellular matrix. The combined use of DFATs and an α-TCP/CS may be an attractive option for bone tissue engineering.  相似文献   

16.

Background

Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown.

Methodology/Principal Findings

Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival.

Conclusion/Significance

This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors.  相似文献   

17.
18.
19.
Yang L  Shen J  He S  Hu G  Shen J  Wang F  Xu L  Dai W  Xiong J  Ni J  Guo C  Wan R  Wang X 《PloS one》2012,7(2):e31807

Background and Aims

Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs.

Methods

CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR.

Results

The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group.

Conclusion

L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号