首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.  相似文献   

2.
Recombinant, human dopamine D3 and D2 receptors form functional heterodimers upon co-expression in COS-7 cells. Herein, actions of the antiparkinsonian agents, S32504, ropinirole and pramipexole, at D3/D2L heterodimers were compared to their effects at the respective monomers and at split, chimeric D3trunk/D2tail and D2trunk/D3tail receptors: the trunk incorporated transmembrane domains (TDs) I-V and the tail TDs VI and VII. In binding assays with the antagonist [3H]nemonapride, all agonists were potent ligands of D3 receptors showing, respectively, 100-, 18- and 56-fold lower affinity at D2L receptors, mimicking the selective D3 receptor antagonist, S33084 (100-fold). At D3trunk/D2tail receptors, except for ropinirole, all drugs showed lower affinities than at D3 sites, whereas for D2trunk/D3tail receptors, affinities of all drugs were higher than at D2L sites. The proportion of high affinity binding sites recognized by S32504, pramipexole and ropinirole in membranes derived from cells co-expressing D3 and D2L sites was higher than in an equivalent mixture of membranes from cells expressing D3 or D2L sites, consistent with the promotion of heterodimer formation. In contrast, the percentage of high and low affinity sites (biphasic isotherms) recognized by S33084 was identical. Functional actions were determined by co-transfection of a chimeric adenylyl cyclase (AC)-V/VI insensitive to D3 receptors. Accordingly, D3 receptor-transfected cells were irresponsive whereas, in D2L receptor-transfected cells, agonists suppressed forskolin-stimulated cAMP production with modest potencies. In cells co-transfected with D3 and D2L receptors, S32504, ropinirole and pramipexole potently suppressed AC-V/VI with EC50s 33-, 19- and 11-fold lower than at D2L receptors, respectively. S32504 also suppressed AC-V/VI activity at split D3trunk/D2tail and D2trunk/D3tail chimeras transfected into COS-7 cells. In conclusion, antiparkinson agents behave as potent agonists at D3/D2'heterodimers', though any role in their actions in vivo remains to be demonstrated.  相似文献   

3.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Mounting evidence supports the hypothesis that inflammation modulates sympathetic sprouting after myocardial infarction (MI). The myeloid P2X7 signal has been shown to activate the nucleotide‐binding and oligomerization domain‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome, a master regulator of inflammation. We investigated whether P2X7 signal participated in the pathogenesis of sympathetic reinnervation after MI, and whether NLRP3/interleukin‐1β (IL‐1β) axis is involved in the process. We explored the relationship between P2X7 receptor (P2X7R) and IL‐1β in the heart tissue of lipopolysaccharide (LPS)‐primed naive rats. 3′‐O‐(4‐benzoyl) benzoyl adenosine 5′‐triphosphate (BzATP), a P2X7R agonist, induced caspase‐1 activation and mature IL‐1β release, which was further neutralized by a NLRP3 inhibitor (16673‐34‐0). MI was induced by coronary artery ligation. Following infarction, a marked increase in P2X7R was localized within infiltrated macrophages and observed in parallel with an up‐regulation of NLRP3 inflammasome levels and the release of IL‐1β in the left ventricle. The administration of A‐740003 (a P2X7R antagonist) significantly prevented the NLRP3/IL‐1β increase. A‐740003 and/or Anakinra (an IL‐1 receptor antagonist) significantly reduced macrophage infiltration as well as macrophage‐based IL‐1β and NGF (nerve growth factor) production and eventually blunted sympathetic hyperinnervation, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth‐associated protein 43 (GAP 43). Moreover, the use of Anakinra partly attenuated sympathetic sprouting. This indicated that the effect of P2X7 on neural remodelling was mediated at least partially by IL‐1β. The arrhythmia score of programmed electric stimulation was in accordance with the degree of sympathetic hyperinnervation. In vitro studies showed that BzATP up‐regulated secretion of nerve growth factor (NGF) in M1 macrophages via IL‐1β. Together, these data indicate that P2X7R contributes to neural and cardiac remodelling, at least partly mediated by NLRP3/IL‐1β axis. Therapeutic interventions targeting P2X7 signal may be a novel approach to ameliorate arrhythmia following MI.  相似文献   

6.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.  相似文献   

8.
Vascular endothelial growth factor receptor‐2 (VEGFR‐2) plays an important role in stimulating the proliferation of endothelial cells and improving the permeability of blood vessels, which is involved in tumor angiogenesis, a process that is essential for tumor growth and metastasis. In this study, we describe a method for high yield of recombinant extracellular domain 3 (KDR3) of human VEGFR‐2 in an Escherichia coli system with further purification by cation exchange chromatography and immobilized metal affinity chromatography (IMAC). The biological activity of recombinant KDR3 was performed by sequestering VEGF in HUVEC proliferation assay. The real‐time binding of human VEGF to immobilized KDR3 was monitored by a label‐free biosensor, Optical waveguide lightmode spectroscopy (OWLS). Under the given experimental conditions, the association rate constant ka was 4.2 × 103 M?1 s?1 and the dissociation rate kd was 5.1 × 10?3 s?1. The dissociation constant KD was then calculated to be 1.2 × 10?6 M. The obtained values will serve as baseline parameters for the design of improved versions of recombinant soluble VEGF receptors and the evaluation of developed anti‐KDR antibodies. In addition, such a scenario established by the use of OWLS will potentiate the kinetic study of ligand/receptor and antigen/antibody. The receptor discussed here, which block VEGF binding to cell membrane KDR, have potential clinical application in the treatment of cancer and other diseases where pathological angiogenesis is involved. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

11.
The β‐adrenergic‐like octopamine receptor (OA2B2) belongs to the class of G‐protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned. Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. PxOA2B2 was transiently expressed in HEK‐293 cells. It was found that PxOA2B2 could be activated by both octopamine and tyramine, resulting in increased intracellular cyclic AMP (cAMP) levels, whereas dopamine and serotonin were not effective in eliciting cAMP production. Further studies with series of PxOA2B2 agonists and antagonists showed that all four tested agonists (e.g., naphazoline, clonidine, 2‐phenylethylamine, and amitraz) could activate the PxOA2B2 receptor, and two of tested antagonists (e.g., phentolamine and mianserin) had significant antagonistic effects. However, antagonist of yohimbine had no effects. Quantitative real‐time polymerase chain reaction analysis showed that Pxoa2b2 gene was expressed in all developmental stages of P. xylostella and that the highest expression occurred in male adults. Further analysis with fourth‐instar P. xylostella larvae showed that the Pxoa2b2 gene was mainly expressed in Malpighian tubule, epidermal, and head tissues. This study provides both a pharmacological characterization and the gene expression patterns of the OA2B2 in P. xylostella, facilitating further research for insecticides using PxOA2B2 as a target.  相似文献   

12.
13.
14.
The T‐cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T‐lymphocytes, with each chain of the TCR comprising three complementarity‐determining regions (CDRs) that collectively form the antigen‐binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR‐pMHC interaction is crucially important in cell‐mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR‐pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T‐cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC‐related molecules that instead of presenting peptides are ideally suited to bind lipid‐based antigens. Structural studies within the CD1‐lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1‐lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC‐like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.  相似文献   

15.
16.
GABAA receptors are pentameric ligand‐gated ion channels that mediate inhibitory fast synaptic transmission in the central nervous system. Consistent with recent pentameric ligand‐gated ion channels structures, sequence analysis predicts an α‐helix near the N‐terminus of each GABAA receptor subunit. Preceding each α‐helix are 8–36 additional residues, which we term the N‐terminal extension. In homomeric GABAC receptors and nicotinic acetylcholine receptors, the N‐terminal α‐helix is functionally essential. Here, we determined the role of the N‐terminal extension and putative α‐helix in heteromeric α1β2γ2 GABAA receptors. This role was most prominent in the α1 subunit, with deletion of the N‐terminal extension or further deletion of the putative α‐helix both dramatically reduced the number of functional receptors at the cell surface. Conversely, deletion of the β2 or γ2 N‐terminal extension had little effect on the number of functional cell surface receptors. Additional deletion of the putative α‐helix in the β2 or γ2 subunits did, however, decrease both functional cell surface receptors and incorporation of the γ2 subunit into mature receptors. In the β2 subunit only, α‐helix deletions affected GABA sensitivity and desensitization. Our findings demonstrate that N‐terminal extensions and α‐helices make key subunit‐specific contributions to assembly, consistent with both regions being involved in inter‐subunit interactions.

  相似文献   


17.
G‐protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. β2‐Adrenergic receptor (β2‐AR) is a well‐studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand‐binding region of β2‐AR using the recently solved high‐resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure‐function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster β2‐AR by site‐directed mutagenesis. We replaced V114 in hamster β2‐AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G‐protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side‐chains but also the aryl‐ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in β2‐AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.  相似文献   

18.
A Staphylococcus aureus transpeptidase, sortase A (SrtA), which catalyzes a peptide ligation with high substrate specificity, is a useful tool to site‐specifically attach proteinaceous/peptidic functional molecules to target proteins. However, its strong Ca2+ dependency makes SrtA difficult for use under low Ca2+ concentrations and in the presence of Ca2+‐binding substances. To overcome this problem, we designed a SrtA mutant that Ca2+‐independently demonstrates a high catalytic activity. The heptamutant (P94R/E105K/E108A/D160N/D165A/K190E/K196T), which resulted from a combination of known mutations at the Ca2+‐binding site and around the substrate‐binding site, successfully catalyzed a selective protein‐protein ligation in the cytoplasm of Escherichia coli. Selective protein modification in living cells is a promising approach for investigating cellular events and regulating cell functions. This SrtA mutant may prove to be a versatile tool for adding new functionalities to proteins of interest by incorporating functional proteins and chemically modified peptides in living cells, which usually retain low Ca2+ concentrations.  相似文献   

19.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号