首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen‐binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.  相似文献   

2.
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.  相似文献   

3.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   

4.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

5.
Offspring quality may benefit from genetic dissimilarity between parents. However, genetic dissimilarity may trade‐off with additive genetic benefits. We hypothesized that when sexual selection produces sex‐specific selective scenarios, the relative benefits of additive genetic vs. dissimilarity may differ for sons and daughters. Here we study a sample of 666 red deer (Cervus elaphus) microsatellite genotypes, including males, females and their foetuses, from 20 wild populations in Spain (the main analyses are based on 241 different foetuses and 190 mother‐foetus pairs). We found that parental lineages were more dissimilar in daughters than in sons. On average, every mother was less related to her mate than to the sample of fathers in the population when producing daughters not sons. Male foetuses conceived early in the rutting season were much more inbred than any other foetuses. These differences maintained through gestation length, ruling out intrauterine mortality as a cause for the results, and indicating that the potential mechanism producing the association between parents’ dissimilarity and offspring sex should operate close to mating or conception time. Our findings highlight the relevance of considering the sex of offspring when studying genetic similarity between parents.  相似文献   

6.
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene‐rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc‐DRB and neutral loci. Nevertheless, the age structure of Mhc‐DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within‐group outbreeding, resulting from group‐living and sex‐biased dispersal, might weaken selection for MHC‐disassortative mate choice.  相似文献   

7.
Good genes models of mate choice predict additive genetic benefits of choice whereas the compatibility hypothesis predicts nonadditive fitness benefits. Here the Chinese rose bitterling, Rhodeus ocellatus, a freshwater fish with a resource‐based mating system, was used to separate additive and nonadditive genetic benefits of female mate choice. A sequential blocked mating design was used to test female mate preferences, and a cross‐classified breeding design coupled with in vitro fertilizations for fitness benefits of mate choice. In addition, the offspring produced by the pairing of preferred and nonpreferred males were reared to maturity and their fitness traits were compared. Finally, the MHC DAB1 gene was typed and male MHC genotypes were correlated with female mate choice. Females showed significant mate preferences but preferences were not congruent among females. There was a significant interaction of male and female genotype on offspring survival, rate of development, growth rate, and body size. No significant male additive effects on offspring fitness were observed. Female mate preferences corresponded with male genetic compatibility, which correlated with MHC dissimilarity. It is proposed that in the rose bitterling genetic compatibility is the mechanism by which females obtain a fitness benefit through mate choice and that male MHC dissimilarity, likely mediated by odor cues, indicates genetic compatibility.  相似文献   

8.
The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates.  相似文献   

9.
Females that mate multiply have the possibility to exert postcopulatory choice and select more compatible sperm to fertilize eggs. Prior work suggests that dissimilarity in major histocompatibility complex (MHC) plays an important role in determining genetic compatibility between partners. Favouring a partner with dissimilar MHC alleles would result in offspring with high MHC diversity and therefore with enhanced survival thanks to increased resistance to pathogens and parasites. The high variability of MHC genes may further allow discrimination against the sperm from related males, reducing offspring homozygosity and inbreeding risk. Despite the large body of work conducted at precopulatory level, the role of MHC similarity between partners at postcopulatory level has been rarely investigated. We used an internal fertilizing fish with high level of multiple matings (Poecilia reticulata) to study whether MHC similarity plays a role in determining the outcome of fertilization when sperm from two males compete for the same set of eggs. We also controlled for genomewide similarity by determining similarity at 10 microsatellite loci. Contrary to prediction, we found that the more MHC‐similar male sired more offspring while similarity at the microsatellite loci did not predict the outcome of sperm competition. Our results suggest that MHC discrimination may be involved in avoidance of hybridization or outbreeding rather than inbreeding avoidance. This, coupled with similar findings in salmon, suggests that the preference for MHC‐dissimilar mates is far from being unanimous and that pre‐ and postcopulatory episodes of sexual selection can indeed act in opposite directions.  相似文献   

10.
It is clear that genes at the major histocompatibility complex (MHC) are involved in mate preferences in a range of species, including humans. However, many questions remain regarding the MHC's exact influence on mate preference in humans. Some research suggests that genetic dissimilarity and individual genetic diversity (heterozygosity) at the MHC influence mate preferences, but the evidence is often inconsistent across studies. In addition, it is not known whether apparent preferences for MHC dissimilarity are specific to the MHC or reflect a more general preference for genome-wide dissimilarity, and whether MHC-related preferences are dependent on the context of mate choice (e.g., when choosing a short-term and long-term partner). Here, we investigated whether preferences for genetic dissimilarity are specific to the MHC and also whether preferences for genetic dissimilarity and diversity are context dependent. Genetic dissimilarity (number of alleles shared) influenced male, but not female, partner preferences, with males showing a preference for the faces of MHC-dissimilar females in both mating contexts. Genetic diversity [heterozygosity (H) and standardized mean (d2)] influenced both male and female preferences, regardless of mating context. Females preferred males with greater diversity at MHC loci (H) and males preferred females with greater diversity at non-MHC loci (d2) in both contexts. Importantly, these findings provide further support for a special role of the MHC in human sexual selection and suggest that male and female mate preferences may work together to potentially enhance both male and female reproductive success by increasing genetic diversity in offspring.  相似文献   

11.
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra‐pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.  相似文献   

12.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

13.
How mate preferences evolve in the first place has been a major conundrum for sexual selection. Some hypotheses explaining this assume fitness benefit derived from subsequent generations. Major histocompatibility complex (MHC)‐based mate choice is a representative example of the mate choice that is associated with such trans‐generational mechanisms. To provide evidences for fitness benefit of MHC‐based mate choice, previous studies assessed the association between own MHC genotype and own fitness components. However, the association between MHC‐based mate choice in the parental generation and fitness components in the resultant offspring generation has only rarely been measured in wild populations. Focusing on the isolated population of the monogamous Ryukyu Scops Owl (Otus elegans interpositus) on Minami‐daito Island, Japan, we found evidence of MHC‐based mate choice. However, we found no evidence of MHC‐based mate choice increasing own reproductive success or offspring survival. This is a rare case study that directly examines the existence of the trans‐generational indirect benefit of MHC‐based mate choice for genetic compatibility from trans‐generational data in a wild bird population. By investigating the fitness benefits of mate choice, this study serves to facilitate our understanding of the evolution of MHC‐based mate choice.  相似文献   

14.
Neff BD  Garner SR  Heath JW  Heath DD 《Heredity》2008,101(2):175-185
Detailed analysis of variation in reproductive success can provide an understanding of the selective pressures that drive the evolution of adaptations. Here, we use experimental spawning channels to assess phenotypic and genotypic correlates of reproductive success in Chinook salmon (Oncorhynchus tshawytscha). Groups of 36 fish in three different sex ratios (1:2, 1:1 and 2:1) were allowed to spawn and the offspring were collected after emergence from the gravel. Microsatellite genetic markers were used to assign parentage of each offspring, and the parents were also typed at the major histocompatibility class IIB locus (MHC). We found that large males, and males with brighter coloration and a more green/blue hue on their lateral integument sired more offspring, albeit only body size and brightness had independent effects. There was no similar relationship between these variables and female reproductive success. Furthermore, there was no effect of sex ratio on the strength or significance of any of the correlations. Females mated non-randomly at the MHC, appearing to select mates that produced offspring with greater genetic diversity as measured by amino-acid divergence. Females mated randomly with respect to male genetic relatedness and males mated randomly with respect to both MHC and genetic relatedness. These results indicate that sexual selection favours increased body size and perhaps integument coloration in males as well as increases genetic diversity at the MHC by female mate choice.  相似文献   

15.
According to the theory of mate choice based on heterozygosity, mates should choose each other in order to increase the heterozygosity of their offspring. In this study, we tested the 'good genes as heterozygosity' hypothesis of mate choice by documenting the mating patterns of wild Atlantic salmon (Salmo salar) using both major histocompatibility complex (MHC) and microsatellite loci. Specifically, we tested the null hypotheses that mate choice in Atlantic salmon is not dependent on the relatedness between potential partners or on the MHC similarity between mates. Three parameters were assessed: (i) the number of shared alleles between partners (x and y) at the MHC (M(xy)), (ii) the MHC amino-acid genotypic distance between mates' genotypes (AA(xy)), and (iii) genetic relatedness between mates (r(xy)). We found that Atlantic salmon choose their mates in order to increase the heterozygosity of their offspring at the MHC and, more specifically, at the peptide-binding region, presumably in order to provide them with better defence against parasites and pathogens. This was supported by a significant difference between the observed and expected AA(xy) (p = 0.0486). Furthermore, mate choice was not a mechanism of overall inbreeding avoidance as genetic relatedness supported a random mating scheme (p = 0.445). This study provides the first evidence that MHC genes influence mate choice in fish.  相似文献   

16.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

17.
The link between adaptive genetic variation, individual fitness and wildlife population dynamics is fundamental to the study of ecology and evolutionary biology. In this study, a Bayesian modelling approach was employed to examine whether individual variability at two major histocompatibility complex (MHC) class II loci (DQA and DRB) and eight neutral microsatellite loci explained variation in female reproductive success for wild populations of European brown hare (Lepus europaeus). We examined two aspects of reproduction: the ability to reproduce (sterility) and the number of offspring produced (fecundity). Samples were collected from eastern Austria, experiencing a sub‐continental climatic regime, and from Belgium with a more Atlantic‐influenced climate. As expected, reproductive success (both sterility and fecundity) was significantly influenced by age regardless of sampling locality. For Belgium, there was also a significant effect of DQA heterozygosity in determining whether females were able to reproduce (95% highest posterior density interval of the regression parameter [−3.64, −0.52]), but no corresponding effect was found for Austria. In neither region was reproduction significantly associated with heterozygosity at the DRB locus. DQA heterozygotes from both regions also showed a clear tendency, but not significantly so, to produce a larger number of offspring. Predictive simulations showed that, in Belgium, sub‐populations of homozygotes will have higher rates of sterile individuals and lower average offspring numbers than heterozygotes. No similar effect is predicted for Austria. The mechanism for the spatial MHC effect is likely to be connected to mate choice for increased heterozygosity or to the linkage of certain MHC alleles with lethal recessives at other loci.  相似文献   

18.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

19.
The vast majority of bird species are socially monogamous; however, extra‐pair paternity is nearly ubiquitous and a number of theories have been proposed to explain the prevalence of this mixed mating strategy. Here, we test the genetic compatibility hypothesis – the idea that females seek extra‐pair copulations with males whose genes are more compatible with her own. For this study, we examined eight years of paternity data (2004–2011) from a Nearctic‐Neotropical migratory bird, the American redstart Setophaga ruticilla, breeding in southeastern Ontario, Canada. We predicted that females paired with genetically similar males (higher relatedness) would be more likely to produce extra‐pair offspring and that extra‐pair offspring would have higher levels of heterozygosity than within‐pair offspring. Alternatively, because this population experiences high levels of immigration, females may produce extra‐pair offspring with more genetically similar males because of the potential for outbreeding depression. Using five highly variable microsatellite markers, we examined patterns of relatedness among social pairs as well as measures of offspring heterozygosity. In contrast to our predictions, we found no difference in relatedness between social pairs where the females produced extra‐pair offspring and social pairs where the females produced only within‐pair offspring. However, extra‐pair offspring were significantly less heterozygous than within‐pair offspring. Together, these findings suggest that females a) are not engaging in extra‐pair fertilizations based on relatedness to their social mate and b) appear to be mating with extra‐pair males that are more genetically similar to themselves. We suggest there may be benefits for females to mate with genetically similar extra‐pair males in highly outbred populations with high rates of immigration, such as for maintaining co‐adapted gene complexes or genes coding for local adaptations.  相似文献   

20.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号