首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ras specific GTPase activating proteins (GAPs), neurofibromin and p120GAP, bind GTP bound Ras and efficiently complement its active site. Here we present comparative data from mutations and fluorescence-based assays of the catalytic domains of both RasGAPs and interpret them using the crystal structures. Three prominent regions in RasGAPs, the arginine-finger loop, the phenylalanine-leucine-arginine (FLR) region and alpha7/variable loop contain structural fingerprints governing the GAP function. The finger loop is crucial for the stabilization of the transition state of the GTPase reaction. This function is controlled by residues proximal to the catalytic arginine, which are strikingly different between the two RasGAPs. These residues specifically determine the orientation and therefore the positioning of the arginine finger in the Ras active site. The invariant FLR region, a hallmark for RasGAPs, indirectly contributes to GTPase stimulation by forming a scaffold, which stabilizes Ras switch regions. We show that a long hydrophobic side-chain in the FLR region is crucial for this function. The alpha7/variable loop uses several conserved residues including two lysine residues, which are involved in numerous interactions with the switch I region of Ras. This region determines the specificity of the Ras-RasGAP interaction.  相似文献   

2.
The brain-specific synaptic guanosine triphosphatase (GTPase)-activating protein (SynGAP) is important in synaptic plasticity. It shows dual specificity for the small guanine nucleotide-binding proteins Rap and Ras. Here, we show that RapGAP activity of SynGAP requires its C2 domain. In contrast to the isolated GAP domain, which does not show any detectable RapGAP activity, a fragment comprising the C2 and GAP domains (C2-GAP) stimulates the intrinsic GTPase reaction of Rap by approximately 1 x 10(4). The C2-GAP crystal structure, complemented by modelling and biochemical analyses, favours a concerted movement of the C2 domain towards the switch II region of Rap to assist in GTPase stimulation. Our data support a catalytic mechanism similar to that of canonical RasGAPs and distinct from the canonical RapGAPs. SynGAP presents the first example, to our knowledge, of a GAP that uses a second domain for catalytic activity, thus pointing to a new function of C2 domains.  相似文献   

3.
The GTP-binding protein Rap1 regulates integrin-mediated and other cell adhesion processes. Unlike most other Ras-related proteins, it contains a threonine in switch II instead of a glutamine (Gln61 in Ras), a residue crucial for the GTPase reaction of most G proteins. Furthermore, unlike most other GTPase-activating proteins (GAPs) for small G proteins, which supply a catalytically important Arg-finger, no arginine residue of RapGAP makes a significant contribution to the GTPase reaction of Rap1. For a detailed understanding of the reaction mechanism, we have solved the structure of Rap1 in complex with Rap1GAP. It shows that the Thr61 of Rap is away from the active site and that an invariant asparagine of RapGAPs, the Asn-thumb, takes over the role of the cis-glutamine of Ras, Rho or Ran. The structure and biochemical data allow to further explain the mechanism and to define the important role of a conserved tyrosine. The structure and biochemical data furthermore show that the RapGAP homologous region of the tumour suppressor Tuberin is sufficient for catalysis on Rheb.  相似文献   

4.
Rap1 is a small GTPase that is involved in signal transduction cascades. It is highly homologous to Ras but it is down-regulated by its own set of GTPase activating proteins (GAPs). To investigate the mechanism of the GTP-hydrolysis reaction catalyzed by Rap1GAP, a catalytically active fragment was expressed in Escherichia coli and characterized by kinetic and mutagenesis studies. The GTPase reaction of Rap1 is stimulated 10(5)-fold by Rap1GAP and has a k(cat) of 6 s(-1) at 25 degrees C. The catalytic effect of GAPs from Ras, Rho, and Rabs depends on a crucial arginine which is inserted into the active site. However, all seven highly conserved arginines of Rap1GAP can be mutated without dramatically reducing V(max) of the GTP-hydrolysis reaction. We found instead two lysines whose mutations reduce catalysis 25- and 100-fold, most likely by an affinity effect. Rap1GAP does also not supply the crucial glutamine that is missing in Rap proteins at position 61. The Rap1(G12V) mutant which in Ras reduces catalysis 10(6)-fold is shown to be efficiently down-regulated by Rap1GAP. As an alternative, Rap1(F64A) is shown by kinetic and cell biological studies to be a Rap1GAP-resistant mutant. This study supports the notion of a completely different mechanism of the Rap1GAP-catalyzed GTP-hydrolysis reaction on Rap1.  相似文献   

5.
Two distinct GAPs of 120 and 235 kDa called GAP1 and NF1 serve as attenuators of Ras, a member of GTP-dependent signal transducers, by stimulating its intrinsic guanosine triphosphatase (GTPase) activity. The GAP1 (also called Ras GAP) is highly specific for Ras and does not stimulate the intrinsic GTPase activity of Rap1 or Rho. Using GAP1C, the C-terminal GTPase activating domain (residues 720-1044) of bovine GAP1, we have shown previously that the GAP1 specificity is determined by the Ras domain (residues 61-65) where Gln61 plays the primary role. The corresponding domain (residues 1175-1531) of human NF1 (called NF1C), which shares only 26% sequence identity with the GAP1C, also activates Ras GTPases. In this article, we demonstrate that the NF1C, like the GAP1C, is highly specific for Ras and does not activate either Rap1 or Rho GTPases. Furthermore, using a series of chimeric Ras/Rap1 and mutated Ras GTPases, we show that Gln at position 61 of the GTPases primarily determines that NF1C as well as GAP1C activates Ras GTPases, but not Rap1 GTPases, and Glu at position 63 of the GTPases is required for maximizing the sensitivity of Ras GTPases to both NF1C and GAP1C. Interestingly, replacement of Glu63 of c-HaRas by Lys reduces its intrinsic GTPase activity and abolishes the GTPase activation by both NF1C and GAP1C. Thus, the potentiation of oncogenicity by Lys63 mutation of c-HaRas appears primarily to be due to the loss of its sensitivity to the two major Ras signal attenuators (NF1 and GAP1).  相似文献   

6.
Rap1 and Rap2 are the only small guanine nucleotide-binding proteins of the Ras superfamily that do not use glutamine for GTP hydrolysis. Moreover, Rap1GAP, which stimulates the GTPase reaction of Rap1 10(5)-fold, does not have the classical "arginine finger" like RasGAP but presumably, introduces an asparagine residue into the active site. Here, we address the requirements of this unique reaction in detail by combining various biochemical methods, such as fluorescence spectroscopy, stopped-flow and time-resolved Fourier transform infrared spectroscopy (FTIR). The fluorescence spectroscopic assay monitors primarily protein-protein interaction steps, while FTIR resolves simultaneously the elementary steps of functional groups labor-free, but it is less sensitive and needs higher concentrations. Combining both methods allows us to distinguish weather mechanistic defects caused by mutation are due to affinity or due to functionality. We show that several mutations of Asn290 block catalysis. Some of the mutants, however, still form a complex with Rap1*GDP in the presence of BeF(x) but not AlF(x), supporting the notion that fluoride complexes are indicators of the ground versus transition state. Mutational analysis also shows that Thr61 is not required for catalysis. While replacement of Thr61 of Rap1 by Leu eliminates GTPase activation by Rap1GAP, the T61A and T61Q mutants have only a minor effect on catalysis, but change the relative rates of cleavage and (P(i)(-)) release. While Rap1GAP(N290A) is completely inactive on wild-type Rap1, it can act on Rap1(T61Q), arguing that Asn290 in trans has a role in catalysis similar to that of the intrinsic Gln in Ras and Rho. Finally, since FTIR works at high, and thus mostly saturating, concentrations, it can clearly separate effects on affinity from purely catalytic modifications, showing that Arg388, conserved between RapGAPs and mutated in the homologous RheBGAP Tuberin, affects binding affinity severely but has no effect on the cleavage reaction itself.  相似文献   

7.
The residues of Ras and Rap proteins that determine their GAP specificities.   总被引:15,自引:0,他引:15  
The oncogenic transformation of a normal fibroblast by mutated Ras genes can be reversed by overexpression of a Ras-related gene called Rap1A (or Krev1). Both Ras and Rap1A proteins are G proteins and appear to serve as signal transducers only in the GTP-bound form. Therefore, GAP1 and GAP3, which stimulate the intrinsic GTPase activities of normal Ras and Rap1A proteins, respectively, serve as attenuators of their signal transducing activities. In this paper, we describe the enzymatic properties of several mutated Rap1A and chimeric Ras/Rap1A (or -1B) proteins which lead to the following conclusions: (i) the GAP3-dependent activation of both Rap1A and -1B GTPases requires Gly12, but neither Thr61 nor Gln63; (ii) residues 64 to 70 of the Rap1 GTPases are sufficient to determine their specificities for GAP3; and (iii) residues 61 to 65 of the Ras GTPases are sufficient for determining their specificities for GAP1. Thus, the domains of the Ras or Rap1 proteins that determine whether their signals are attenuated by GAP1 or GAP3 are distinct from the N-terminal domain (residues 21 to 54) that determines whether their signals are oncogenic or antioncogenic. The Arg12 mutant of chimeric HaRas(1-54)/Rap1A(55-184) protein has been previously reported to be oncogenic (Zhang, K., Noda, M., Vass, W. C., Papageorge, A.G., and Lowy, D.R. (1990) Science 249, 162-165). In this paper, we show that the Val12 mutant of chimeric HaRas(1-54)/Rap1B(55-184) protein is also oncogenic, suggesting that the C-terminal geranylgeranylation of the Rap 1B protein can replace functionally the C-terminal farnesylation of the Ras protein to allow the G protein to be oncogenic.  相似文献   

8.
The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.  相似文献   

9.
GTPase activating proteins (GAPs) down-regulate Ras-like proteins by stimulating their GTP hydrolysis, and a malfunction of this reaction leads to disease formation. In most cases, the molecular mechanism of activation involves stabilization of a catalytic Gln and insertion of a catalytic Arg into the active site by GAP. Rap1 neither possesses a Gln nor does its cognate Rap-GAP employ an Arg. Recently it was proposed that RapGAP provides a catalytic Asn, which substitutes for the Gln found in all other Ras-like proteins (Daumke, O., Weyand, M., Chakrabarti, P. P., Vetter, I. R., and Wittinghofer, A. (2004) Nature 429, 197-201). Here, RapGAP-mediated activation has been investigated by time-resolved Fourier transform infrared spectroscopy. Although the intrinsic hydrolysis reactions of Rap and Ras are very similar, the GAP-catalyzed reaction shows unique features. RapGAP binding induces a GTP(*) conformation in which the three phosphate groups are oriented such that they are vibrationally coupled to each other, in contrast to what was seen in the intrinsic and the Ras.RasGAP reactions. However, the charge shift toward beta-phosphate observed with RasGAP was also observed for RapGAP. A GDP.P(i) intermediate accumulates in the GAP-catalyzed reaction, because the release of P(i) is eight times slower than the cleavage reaction, and significant GTP synthesis from GDP.P(i) was observed. Partial steps of the cleavage reaction are correlated with structural changes of protein side groups and backbone. Thus, the Rap.RapGAP catalytic machinery compensates for the absence of a cis-Gln by a trans-Asn and for the catalytic Arg by inducing a different GTP conformation that is more prone to be attacked by a water molecule.  相似文献   

10.
The Rsr1 protein of Saccharomyces cerevisiae has been shown to be essential for bud site selection (Bender, A., and Pringle, J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9976-9980). This protein of 272 amino acids shares approximately 50% sequence identity with both Ras and Rap GTPases. However, neither GTP binding nor GTPase activity of the Rsr1 protein has been reported. The Rsr1 protein shares with human Rap1 GTPases the four specific motifs, i.e. Gly-12, residues 32-40, Ala-59, and residues 64-70, that are required for GAP3-dependent activation of the Rap1 GTPases. In this paper we demonstrate that the intrinsic GTPase activity of the Rsr1 protein is stimulated by GAP3 purified from bovine brain cytosol. The Rsr1 GTPase is not activated by either GAP1 or GAP2 which are specific for the Ras and Rho GTPases, respectively. Thus, it appears that the Rsr1 GTPase is a new member of the Rap1 GTPase family. Replacement of Gly-12 by Val in the Rsr1 GTPase completely abolishes the GAP3-dependent activation. The chimeric GTPases, Ras(1-60)/Rsr1(61-168) and Rsr1(1-65)/Ras(66-189), are activated by GAP3 but not by GAP1. Replacement of Thr-65 by Ser in the latter chimeric GTPase completely abolishes the GAP3-dependent activation, indicating that Thr-65 is required for distinguishing GAP3 from GAP1. We have previously shown that Gln-61 and Ser-65 are sufficient to determine the GAP1 specificity. Replacement of Thr-35 by Ala in the common effector domain (residues 32-40) of the chimeric Ras/Rsr1 GTPases completely abolishes GAP3-dependent activation.  相似文献   

11.
GAP1IP4BP is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1m, CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1m, possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1IP4BP can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1IP4BP/GAP1m chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1IP4BP, we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1IP4BP. In contrast, we present evidence consistent with a model in which the RasGRD of GAP1IP4BP functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.The Ras-like family of small GTPases are ubiquitously expressed, evolutionarily conserved proteins that, by undergoing conformational changes in response to the alternate binding of GDP and GTP, function as binary switches (28, 31, 35). The GDP-bound “off” state and the GTP-bound “on” state recognize distinct effector proteins, thereby allowing the regulation of a variety of downstream signaling events (28, 31, 35). While Ras is the best-known and best-studied Ras-like GTPase, Rap1 has recently attracted considerable attention (reviewed in reference 20).Rap1 was originally identified through its ability, when overexpressed, to reverse the phenotype of K-Ras-transformed NIH 3T3 cells (19). As Ras and Rap1 have very similar effector regions, the ability of Rap1 to reverse the transformed phenotype appeared to arise through an ability to compete with K-Ras effectors. For example, Rap1 binds the Ras effector Raf1 but this does not lead to its activation (11). This is consistent with a simple model in which Rap1 functions as a Ras antagonist (6, 37). However, recent work has challenged this view. Increasing evidence points to Rap1 interacting with its own panel of effectors through which it controls cell-cell adhesion and cell-matrix interactions (reviewed in reference 20).Like that of other GTPases, the activation of Ras and Rap1 is regulated through guanine nucleotide exchange factors, which control activation by stimulating the exchange of GDP for GTP. Inactivation is driven by GTPase-activating proteins (GAPs). These enhance the intrinsic GTPase activity of Ras and Rap1, thereby leading to GTP hydrolysis. A wide variety of guanine nucleotide exchange factors and GAPs specific for these GTPases have been identified (14). Through the arrangement of different modular domains, these proteins are regulated following the activation of cell surface receptors. This occurs either through direct association with the activated receptor or indirectly through second messengers (4, 5, 14, 41).Mammalian proteins capable of functioning as Ras GAPs include NF1 (3, 27, 40), p120GAP (38), the semaphorin 4D receptor plexin-B1 (29), and members of the GAP1 (reviewed in reference 41) and SynGAP (DAB2IP, nGAP, and SynGAP) families (10, 18, 39). These function as Ras GAPs by supplying a catalytic arginine residue—the arginine finger—into the active site of Ras. This stabilizes the transition state of the GTPase reaction, increasing the reaction rate by more than 1,000-fold (1, 33, 34).Rap1 GAPs include Rap GAPs I and II, the SPA-1 family (SPA-1, SPAR, SPAL, and E6TP1), and tuberin (16, 17, 26, 32). Unlike Ras, Rap1 does not possess the catalytic glutamine residue that is critical for GTP hydrolysis in Ras. This fundamental difference means that the mechanisms by which Ras and Rap1 GAPs function are distinct. Rap1 GAPs do not employ a catalytic arginine residue (8, 9); instead, they provide a catalytic asparagine—the asparagine thumb—to stimulate GTP hydrolysis (15). Here the asparagine carboxamide side chain has a function similar to that of the glutamine residue in Ras, stabilizing the position of the nucleophilic water and γ-phosphate in the transition complex (15, 36).Given such distinct catalytic mechanisms, surprisingly, some Ras GAPs, while having no detectable sequence homology with any Rap1 GAPs, are capable of stimulating the GTPase activity of Rap1. The first protein found to display such dual activities was GAP1IP4BP (13) (also known as RASA3, GAPIII, and R-Ras GAP). This is a member of the GAP1 family, which also comprises GAP1m, CAPRI, and RASAL (2, 23-25). These proteins are characterized by a domain architecture comprising amino-terminal tandem C2 domains, a highly conserved central Ras GAP-related domain (RasGRD), and a carboxy-terminal pleckstrin homology (PH) domain that is associated with a Bruton''s tyrosine kinase (Btk) motif (41). Consistent with the presence of the RasGRD, all proteins display Ras GAP activity, although each is differentially regulated following receptor stimulation (41). With the notable exception of GAP1m, all GAP1 proteins also possess efficient Rap1 GAP activity (22). Such dual specificity is not restricted solely to GAP1 proteins. Recently, C2 domain-containing SynGAP—a neuronal Ras GAP—has also been shown to display Rap1 GAP activity (21), an activity that appears to require, alongside the RasGRD, the presence of a single C2 domain (30).Here we have examined the mechanism behind the dual Ras and Rap1 GAP activities of GAP1IP4BP. Through the generation of a series of GAP1IP4BP/GAP1m chimeras, we have established that while the C2 domains of GAP1IP4BP are required to stabilize the RasGRD, these domains do not supply catalytic residues required for Rap1 GAP activity. Rather, the Rap1 GAP catalytic machinery appears to reside solely within the RasGRD. By the site-directed mutagenesis of selected asparagine and glutamine residues within this domain—selected following the generation of a predicted molecular model of the GAP1IP4BP RasGRD-Ras(Rap1) complex—we establish that the ability of GAP1IP4BP to function as a Rap1 GAP does not occur via a mechanism that utilizes a classic asparagine thumb. Rather, we suggest that the GAP1IP4BP RasGRD functions to stabilize the switch II region of Rap1 in a manner that allows a catalytic arginine finger from GAP1IP4BP to drive the hydrolysis of GTP.  相似文献   

12.
Ras and Rap proteins are closely related small GTPases. Whereas Ras is known for its role in cell proliferation and survival, Rap1 is predominantly involved in cell adhesion and cell junction formation. Ras and Rap are regulated by different sets of guanine nucleotide exchange factors and GTPase-activating proteins, determining one level of specificity. In addition, although the effector domains are highly similar, Rap and Ras interact with largely different sets of effectors, providing a second level of specificity. In this review, we discuss the regulatory proteins and effectors of Ras and Rap, with a focus on those of Rap.Ras-like small G-proteins are ubiquitously expressed, conserved molecular switches that couple extracellular signals to various cellular responses. Different signals can activate GEFs2 that induce the small G-protein to switch from the inactive, GDP-bound state to the active, GTP-bound state. This induces a conformational change that allows downstream effector proteins to bind specifically to and be activated by the GTP-bound protein to mediate diverse biological responses. Small G-proteins are returned to the GDP-bound state by hydrolyzing GTP with the help of GAPs. Ras (Ha-Ras, Ki-Ras, and N-Ras) and Rap proteins (Rap1A, Rap1B, Rap2A, Rap2B, and Rap2C) have similar effector-binding regions that interact predominantly with RA domains or the structurally similar RBDs present in a variety of different proteins. Both protein families operate in different signaling networks. For instance, Ras is central in a network controlling cell proliferation and cell survival, whereas Rap1 predominantly controls cell adhesion, cell junction formation, cell secretion, and cell polarity. These different functions are reflected in a largely different set of GEFs and GAPs. Also the downstream effector proteins operate in a selective manner in either one of the networks.  相似文献   

13.
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.  相似文献   

14.
The regulation of the GTPase activity of the Ras proteins is thought to be a key element of signal transduction. Ras proteins have intrinsic GTPase activity and are active in signal transduction when bound to GTP but not following hydrolysis of GTP to GDP. Three cellular Ras GTPase-activating proteins (Ras-gaps) which increase the GTPase activity of wild-type (wt) Ras but not activated Ras in vitro have been identified: type I and type II GAP and type I NF1. Mutations of wt Ras resulting in lowered intrinsic GTPase activity or loss of response to cellular Ras-gap proteins are thought to be the primary reason for the transforming properties of the Ras proteins. In vitro assays show type I and type II GAP and the GAP-related domain of type I NF1 to have similar biochemical properties with respect to activation of the wt Ras GTPase, and it appears as though both type I GAP and NF1 can modulate the GTPase function of Ras in cells. Here we report the assembling of a full-length coding clone for type I NF1 and the biological effects of microinjection of Ras and Ras-gap proteins into fibroblasts. We have found that type I GAP, type II GAP, and type I NF1 show markedly different biological activities in vivo. Coinjection of type I GAP or type I NF1, but not type II GAP, with wt Ras abolished the ability of wt Ras to induce expression from an AP-1-controlled reporter gene. We also found that serum-stimulated DNA synthesis was reduced by prior injection of cells with type I GAP but not type II GAP or type I NF1. These results suggest that type I GAP, type II GAP, and type I NF1 may have different activities in vivo and support the hypothesis that while type I forms of GAP and NF1 may act as negative regulators of wt Ras, they may do so with differential efficiencies.  相似文献   

15.
RalA is a GTPase with effectors such as Sec5 and Exo84 in the exocyst complex and RalBP1, a GAP for Rho proteins. We report the crystal structures of Ral-GppNHp and Ral-GDP. Disordered switch I and switch II, located away from crystal contacts, are observed in one of the molecules in the asymmetric unit of the Ral-GppNHp structure. In the other molecule in the asymmetric unit, a second Mg(2+) ion is bound to the GppNHp gamma-phosphate in an environment in which switch I is pulled away from the nucleotide and switch II is found in a tight beta turn. Clustering of conserved residues on the surface of Ral-GppNHp identifies two putative sites for protein-protein interaction. One site is adjacent to switch I. The other is modulated by switch II and is obstructed in Ral-GDP. The Ral structures are discussed in the context of the published structures of the Ral/Sec5 complex, Ras, and Rap.  相似文献   

16.
Abstract

Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.  相似文献   

17.
Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module's expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent 'decision making' topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation.  相似文献   

18.
The Goα splice variants Go1α and Go2α are subunits of the most abundant G‐proteins in brain, Go1 and Go2. Only a few interacting partners binding to Go1α have been described so far and splice variant‐specific differences are not known. Using a yeast two‐hybrid screen with constitutively active Go2α as bait, we identified Rap1GTPase activating protein (Rap1GAP) and Girdin as interacting partners of Go2α, which was confirmed by co‐immunoprecipitation. Comparison of subcellular fractions from brains of wild type and Go2α?/? mice revealed no differences in the overall expression level of Girdin or Rap1GAP. However, we found higher amounts of active Rap1‐GTP in brains of Go2α deficient mutants, indicating that Go2α may increase Rap1GAP activity, thereby effecting the Rap1 activation/deactivation cycle. Rap1 has been shown to be involved in neurite outgrowth and given a Rap1GAP‐Go2α interaction, we found that the loss of Go2α affected axonal outgrowth. Axons of cultured cortical and hippocampal neurons prepared from embryonic Go2α?/? mice grew longer and developed more branches than those from wild‐type mice. Taken together, we provide evidence that Go2α regulates axonal outgrowth and branching.  相似文献   

19.
Ras and its GTPase activating proteins (GAPs) are among the crucial regulators of extracelluar ligands. Information about these regulators has been elucidated during the course of studies in signal transduction over the last two decades. RasGAPs such as p120GAP and neurofibromin have been studied extensively for their roles as either "negative" regulators or effectors of Ras. Accumulating evidence suggests that these molecules are crucial regulators of extracellular stimuli that serve to maintain the homeostasis of cellular functions. This compendium highlights cellular functions of RasGAPs and their signaling characteristics from the viewpoint of homeostasis, including our recent finding of the phenotype of R-RasGAP mutant mice whose GAP activity is down-regulated.  相似文献   

20.
GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (Ras GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP domain, surrounded by amino-terminal C(2) domains and a carboxyl-terminal pleckstrin homology/Bruton's tyrosine kinase domain, GAP1(IP4BP) has previously been shown to possess an unexpected GAP activity on the Ras-related protein Rap, besides the predicted Ras GAP activity (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 376, 527-530). Here we have shown that GAP1(IP4BP) is indeed an efficient Ras/Rap GAP, having K(m)s of 213 and 42 microm and estimated k(cat)s of 48 and 16 s(-1) for Ras and Rap, respectively. For this dual activity, regions outside the Ras GAP domain are required, as the isolated domain (residues 291-569) retains a pronounced Ras GAP activity yet has very low activity toward Rap. Interestingly, mutagenesis of the Ras GAP arginine finger, and surrounding residues important in Ras binding, inhibit both Ras and Rap GAP activity of GAP1(IP4BP). Although the precise details by which GAP1(IP4BP) can function as a Rap GAP remain to be determined, these data are consistent with Rap associating with GAP1(IP4BP) through the Ras-binding site within the Ras GAP domain. Finally, we have established that such dual Ras/Rap GAP activity is not restricted to GAP1(IP4BP). Although GAP1(m) appears to constitute a specific Ras GAP, CAPRI and RASAL display dual activity. For CAPRI, its Rap GAP activity is modulated upon its Ca(2+)-induced association with the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号