首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract. Aesculus turbinata is a tree species with large seeds (6.2 g mean dry weight). We studied the demography of its seeds and seedlings in a temperate deciduous forest in northern Japan to elucidate the ecological significance of large seeds with special reference to herbivory and secondary dispersal. Both seed and seedling stages suffered greatly from herbivores. Seedling herbivory was important judged from experiments with shoot clipping and hypogeal cotyledon removal. However, some seedlings survived through re-sprouting after herbivory. Survival rate and percentage resprouting seedlings were lower than those with remaining cotyledons, though seedling size was not affected. This suggests that stored resources in hypogeal cotyledons are working as a kind of ‘risk hedge’ against severe aboveground shoot clipping experienced by A. turbinata. The spatial distribution of seedlings was expanded via seed scatter-hoarding by rodents. Seedling survival rate was higher within canopy gaps than under closed canopy, indicating that canopy gaps are safe sites for establishment, and was negatively correlated with seedling density. Therefore, secondary seed dispersal in this species seems to be effective in ‘finding’ safe sites and in ‘escaping’ density-dependent mortality. The large seeds and seedlings of A. turbinata are attractive to herbivores, but the high resistance of seedlings to herbivory due to large reserves and the effective secondary dispersal appear to mitigate these disadvantages.  相似文献   

2.
Angiosperms are divided into two distinct classes—the dicotyledons (dicots) and monocotyledons (monocots)—based in part on the number of cotyledons in mature embryos. In this paper, we describe single‐cotyledon pea mutants, termed sic (single cotyledon), all of which show a degree of fusion between the cotyledons. The fusion in sic1 is along the margin of one cotyledon and is less complete than in sic2 embryos, but the effects of the mutations are additive in the double mutant. Occasionally sic2 mutants will show fusion of the two cotyledons into one cylindrical embryo in which the shoot apex becomes surrounded by the cotyledons. Both sic1 and sic2 mutants produce fertile plants. In the sic3 embryo, a single cotyledon is generated under the shoot apex that breaks the vascular connection between root and shoot, causing embryo lethality. The pattern of cotyledon development in all these mutants is identified by in situ mRNA hybridization and antibody labeling, using the storage protein vicilin as a cotyledon‐specific marker. These patterns indicate that the joining of the cotyledons was due to zonal growth. The results indicate that there are genes in pea that influence the positioning and the morphology of the cotyledon. A model for cotyledon development in pea is proposed that is based on the regulation of the positioning of cell clusters by the sic genes. Dev. Genet. 25:11–22, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Plants have considerable ability to respond to herbivory, both with (above-ground) regrowth and with increased defense. We simulated both leaf and shoot herbivory in controlled, replicated experiments on individuals of Acacia drepanolobium in Laikipia, Kenya. These experiments were carried out on individuals that had experienced different, experimentally controlled histories of large mammalian herbivory. Both forms of simulated herbivory were associated with compensatory regrowth. Branches whose shoots had been removed grew significantly more over the next year than paired control branches, fully compensating for the lost shoot length. Branches whose leaves were removed both grew faster and had more leaves one year later than did control branches. Shoot removal, but not leaf removal, increased the production of side shoots. However, because past herbivore pressure was negatively associated with net shoot growth, there may be a long-term cost of herbivory even when plants appear to fully compensate for herbivory in the short term. In contrast to the effects on growth, simulated herbivory did not significantly increase physical (spines) or chemical (tannins) defenses, and there were no significant negative correlations between compensatory growth and plant defense.  相似文献   

4.
In a greenhouse experiment, seedling survival of two oak species (Quercus rugosa and Q. laurina) was greatly affected by the excision of cotyledons 1 mo after germination, with a greater impact on Q. laurina. The effect of seed size was also significant for both species, with a positive correlation between seed mass and survival and growth. The effect of cotyledon excision on seedling growth persisted throughout the first growing season in Q. rugosa and was not analyzed for Q. laurina due to the low number of seedlings that survived cotyledon excision. Seed size significantly affected seedling height, diameter, leaf area, and biomass at 6 mo. Seed size and cotyledon retention affected the ability of Q. rugosa to recover from herbivory, as both factors had a significant effect on relative growth rates after aerial biomass removal. The results show that seedlings originating from large seeds can better endure loss of cotyledons and aerial biomass and thus are better equipped to confront stress early in their lives.  相似文献   

5.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

6.
Cucumber explants including at least part of the cotyledon,a short section of hypocotyl, and the apical bud, are capableof producing multiple axillary buds from the seedling apex andadventitious shoots from the hypocotyl base in a medium whichcontains 2·0 mg dm–3 of kinetin. Removal of theapical bud triples the number of shoots produced from the apexof explants with two intact cotyledons but does not affect shootproduction from explants with some or all of their cotyledonsremoved. The area of intact cotyledon also influences morphogenesis,as explants with both cotyledons removed, failed to produceadventitious shoots from the hypocotyl base. Culture in continuousdarkness entirely prevents shoot development from the explantbase, but has little influence on shoot production from theapex. The influence of endogenous growth regulators and apicaldominance on the morphogenesis of shoots in cucumber seedlingsare discussed. Key words: Cucumber, cotyledons, apical dominance, morphogenesis, adventitious shoots, Cucumis sativus  相似文献   

7.
Kaoru Kitajima 《Biotropica》2003,35(3):429-434
The relative importance of cotyledons and leaves for seedling survival was evaluated using a factorial field experiment on three neotropical tree species with contrasting cotyledon functional morphologies (photosynthetic, epigeal reserve vs. hypogeal reserve). In all species, cotyledon and leaf removal shortly after leaf expansion had additive negative effects on seedling survival over 7 weeks. Carbon supplies from cotyledons and other carbohydrate reserves apparently enhanced ability of seedlings to cope with herbivory and disease.  相似文献   

8.
Plants have evolved a diverse suite of tolerance traits against herbivory, including compensatory growth, increased photosynthesis and activation of dormant meristems. We studied the responses of five Acacia species to simulated herbivory in a semi‐arid southern African savannah. We clipped terminal shoots of five juvenile Acacia species (Acacia rehmanniana, A. nilotica, A. karroo, A. arenaria and A. gerarrdii) to simulate herbivory. We then determined biomass change after 5 months and also counted the number of resprouts and measured their length and diameter. All clipped shoots produced resprouts, with all the Acacia species compensating for the lost biomass. We found considerable interspecific variation in the compensation for biomass lost to herbivory in the five Acacia species. Resprouts biomass ranged from two times in A. arenaria to four times that removed in A. karroo. Acacia karroo produced many resprouts, while A. arenaria produced very few resprouts (4 vs 15 resprouts). The relationship between the number of resprouts and their growth also varied among the different Acacia species. We conclude that the response of Acacias to herbivory ranges from prolific resprouters (such as A. karroo) to poor resprouters (e.g. A. arenaria).  相似文献   

9.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   

10.
The quantitative anatomy of developing cotyledons of NAD-malic enzyme species Salsola incanescens and NADP-malic enzyme species S. paulsenii (Chenopodiaceae) was studied. S. incanescens belongs to the group of species with foliar type of seedling development characterized by slowly growing cotyledons and a rosette form at juvenility. The rosette is the consequence of fast leaf formation, which was correlated with a low rate of leaf growth. S. paulsenii belongs to the group with the cotyledonous type of seedling development. A high growth rate of cotyledons, slow leaf formation, and absence of the rosette characterize this type. Slow leaf formation was correlated with a high rate of leaf growth. The Kranz–anatomy in cotyledons of S. incanescens (atriplicoid type) and S. paulsenii (salsoloid type) determines the duration of cotyledon development proceeding for 15 days after seed germination. The rate of growth changes during the developmental period was correlated with the type of seedling development. Cotyledons of a foliar species S. incanescens exhibit 2 to 5 times slower growth changes in cotyledon area, width, thickness, volume of mesophyll and bundle sheath cells, and number of chloroplasts per bundle sheath cell than the cotyledons of a cotyledonous species S. paulsenii. During cotyledon development in both species, the number of chloroplasts per mesophyll cell remained unchanged, and developmental changes in the bundle sheath occurred at higher rate than in mesophyll cells. Thus, these two indices seem to be independent of the type of Kranz–anatomy. The presence of atriplicoid type cotyledons in the species with salsoloid structure of true leaves might indicate a close genetic relationship between these two patterns of Kranz-anatomy.  相似文献   

11.
Skowno  A.L.  Midgley  J.J.  Bond  W.J.  Balfour  D. 《Plant Ecology》1999,145(1):1-9
Analysis of aerial photographs indicates that woody plant biomass has rapidly increased in Hluhluwe Game Reserve over the last 40 years. Open Acacia nilotica savanna is being replaced by broadleaf species, especially Euclea spp. We were interested in whether this secondary successional shift was due to high numbers of seedlings establishing and growing to maturity under acacias (facilitation) or due to the release of already established, but suppressed individuals (gullivers) of the resprouting broadleaf species. We examined the recruitment patterns and size-class distributions (height, basal diameter) of important species in this savanna.Densities of euclea seedlings (<0.6 cm basal diameter) under Acacia nilotica were low (median of 0 and mean of 0.06 m2) below adult canopies and effectively zero in adjacent interspaces. No differences in numbers of other broadleaf species were found between open sites and under Acacia nilotica sites. Few large eucleas or other broadleaf species occurred under Acacia nilotica. Few Acacia nilotica recruits were found either under adults or in the open whereas Acacia karroo recruits were more common.The overall size class distribution for eucleas was dominated by individuals in the intermediate size class, suggesting that recruitment is not the dominant demographic process. We propose that the escape of intermediate sized eucleas from the fire trap has caused the increase in woody plants.Analysis of a time sequence of aerial photographs shows that invasion occurred rapidly between 1954 and 1975. A common feature for sites where woody plant invasion has taken place, was the presence of barriers to fire (especially roads). We suggest that the recent and rapid increase in woody vegetation is due to a decrease in the frequency of intense fires, rather than the recent absence of megaherbivores which allowed Acacia nilotica establishment. Few intense fires allow suppressed tree or shrub individuals, ('gullivers'), to escape the grass/fire layer and thereby become tall and fire-resistant. This release may explain the rapid rate of invasion by inherently slow growing broad-leaf species.  相似文献   

12.
Seedlings of Acacia tortilis (Forsk) Hyne and Acacia xanthophloea Benth. were raised under controlled glasshouse conditions. Control plants were watered daily while other treatments involved withholding water for 2, 4 and 6 days with 1‐day rehydration to container capacity. Compared to A. tortilis, A. xanthophloea seedlings showed higher leaf area, relative growth rates and total dry weight production under adequate water supply conditions. However, with increased water stress, A. xanthophloea seedlings could not alter their pattern of carbon allocation, retaining their root : shoot (r : s) ratio of about 0.5. By comparison, A. tortilis seedlings shifted carbon allocation to the roots, leading to a r : s ratio of 1.5 in water‐stressed seedlings, compared to 0.5 in the control plants. The ability of A. tortilis to reallocate carbon to the roots away from the shoots and to actually increase root growth compared to A. xanthophloea was a dehydration postponement strategy that may be important in species survival during drought.  相似文献   

13.
The level of gibberellin-like substances was determined in the cotyledons and axis of developing seedlings of dwarf (Little Marvel) and normal (Tall Telephone) cultivars of pea (Pisum sativum L.). The effect of cotyledon removal with GA3 application on growth was also examined. Greater levels of gibberellin-like substances were observed in the cotyledons of the normal cultivar than the dwarf. This was particularly evident in the cotyledons during the early stages of seedling growth. Subsequently there was a decline in GA levels in the cotyledons. This was coincidental with a rise in GA content in the axis with markedly greater levels in the normal than the dwarf cultivar. Decotyledonated dwarf and normal plants supplied with GA were much taller than the decotyledonated controls. This observation along with those of the gibberellin levels in the cotyledons and axis, provided circumstantial evidence that there may be translocation of gibberellins from the cotyledons to the axis.  相似文献   

14.
Acacia senegal (L) Willd. is a small sized tree species of Tropical arid region of Southern West Pakistan. It is well-known for producing gum arabic. Fruits from dry streams with loamy sand soil type were of bigger size whereas seed output per pod and seed weight were higher in hilly regions. The seeds possess external dormancy (seed coat), which can be broken by mechanical and chemical scarification, water (cold and boiling) and dark treatments. Seeds gave high percentage of germination in fine sand in pot culture. Germination percentage was high in May–July. The growth rate of seedlings both in pot culture and field conditions was high in April, May, June and July. Seeds collected from different localities showed considerable variation in germination capacity. Percentage and rate of germination increased with the lapse of time. Correlation of growth and abundance ofAcacia senegal was found with topography, soil texture, soil structure, soil consistence, maximum water holding capacity, wilting coefficient (sub-surface soil), soil carbonates (surface soil) soil pH (surface soil) and community associates. The plant can be propagated by shoot cuttings. Smaller and thinner cuttings are easily propagated. The plant is infested by Buffaloe tree hopper and is also infected byCladosporium herbarum. Occasionally seedlings are attacked byFusarium sp. The relative turgidity of branches was found to be high throughout the study period, but the leaves showed considerable variation.  相似文献   

15.
Acacia erioloba woodlands provide important forage and shade for wildlife in northern Botswana. Mortality of mature trees caused by browsing elephants has been well documented but the lack of regeneration of new trees has received little attention. Annual growth of new shoots and changes in height were measured to determine the influence of elephants and small ungulate browsers, rainfall and fire on the growth and survival of established A. erioloba seedlings from 1995 to 1997 in the Savuti area of Chobe National Park. All above‐ground vegetation was removed from 40% of established seedlings in 1995 and 28% in 1997 by browsing elephants, and the mean height of remaining seedlings decreased from >550 mm to <300 mm. When seedlings browsed by kudu, impala and steenbok but not elephants are considered, mean seedling height increased <50 mm per year, even though mean new shoot growth remaining at the end of the dry season was 100–200 mm. Fires burned portions of the study area in 1993 and 1997, killing above‐ground vegetation, but most established A. erioloba seedlings survived, producing coppice growth from roots. While elephants and fire caused the greatest reduction in established seedling height and number, small browsers suppressed growth, keeping seedlings vulnerable to fire and delaying growth to reproductive maturity.  相似文献   

16.
Three experiments are reported concerning the effect of rabbit grazing (Oryctolagus cuniculus L.) upon the recruitment of Acacia seedlings to populations in the South Australian arid zone. In western myall woodland (Acacia papyrocaqsa Benth.) under prevailing rabbit and sheep densities, seedlings exposed to grazing by these two herbivores or to rabbits alone were severely pruned, whereas totally protected seedlings grew unchecked. Seedlings of four Acacia species; A. papyrocarpa, A. oswaldii (F. Muell.), A. kempeana (F. Muell.) and A. burkittii (F. Muell. ex Benth.) were transplanted into four 50 m × 50 m rabbit-proof enclosures. Six rabbits were introduced into each enclosure and within 24 h half of the total seedling population had been grazed. This was at a seedling dry weight ratio of 1|150 000 of the total fodder on offer. In one of the enclosures no seedlings were eaten and there is evidence to suggest that a dense patch of grass had a buffering effect, reducing grazing pressure. Small shoots cut from old Acacia and transferred to the ground throughout 1000 ha of western myall woodland were grazed rapidly near rabbit warrens and progressively less rapidly with increased distance from warrens. The experiments demonstrated that even with the lowered post-myxomatosis population densities, rabbit grazing pressure would significantly affect recruitment in arid zone Acacia populations in the absence of stock.  相似文献   

17.
Aims: To assess the phenotypic, symbiotic and genotypic diversity scope of Mesorhizobium spp. strains associated with Acacia seyal (Del.) isolated from different agro‐ecological zones in Senegal, and uses of susceptible microbial inoculum in a reafforestation process. Methods and Results: A polyphasic approach including phenotypic and genotypic techniques was used to study the diversity and their relationships with other biovars and species of rhizobia. The geographical origins of the strains have limited effect on their phylogenetic and phenotypic classification. Nodulation tests indicated promiscuity of the strains studied, because they were capable of nodulating six woody legume species (Acacia auriculiformis, Acacia senegal, A. seyal, Acacia tortilis ssp. raddiana, Leucaena leucocephala and Prosopis juliflora). Sequencing and phylogenetic analyses of nodA, nodC and nifH genes pointed out that in contrast to nodA gene, the phylogenies of nodC and nifH genes were not consistent with that of 16S rRNA, indicating that these genes of the A. seyal‐nodulating rhizobia might have different origins. Microbial inoculation on nonsterile soil had significant effect on the nodules number and the growth of the seedlings, indicating that these strains of rhizobia might be used as inoculum. Conclusions: The results indicated that A. seyal is a nonselective host that can establish effective symbiosis with Mesorhizobium spp. strains from diverse genomic backgrounds and that the selected A. seyal‐nodulating rhizobia could enhance plant growth. Significance and Impact of the Study: These results showed the important role that A. seyal could play in the improvement of reafforestation process as a promiscuous host, which can establish effective symbiosis with rhizobia from diverse genomic backgrounds.  相似文献   

18.
The influences of seasons, plant age, and physicochemical properties of the soil on surface and deep biological arbuscular mycorrhizal fungus parameters associated with Acacia albida were assessed in different areas of Senegal. More indigenous arbuscular mycorrhizal propagules were found in the localities of the Sudano-Guinean zone (Djinaki and Kabrousse) than in those of the Sahelian zone (Louga and Diokoul), and species belonging to the genera Glomus, Gigaspora, Acaulospora, and Sclerocystis prevailed. The numbers of total and viable spores increased more during the rainy season than during the dry season (about 108% more total spores and 262% more viable spores). Similarly, both total and viable spores were more prevalent around young Acacia trees than old trees. However, the intensities of root colonization did not differ in each ecoclimatic zone.  相似文献   

19.
Regeneration efficiency from three different regions of cotyledonary explants was examined in six sunflower inbred lines. Proximal, middle and distal regions from seedling cotyledons were cultured on regeneration medium supplemented with growth regulators. Plant regeneration by direct organogenesis was observed after four weeks. Significant differences among inbred lines were found for regeneration percentage and average number of shoots per total explants. Also a decreasing regeneration capacity was observed from proximal to distal sections for all inbred lines. Regeneration ability from cotyledonary explants in this species is strongly influenced by the genotype and by the region from which the explant was obtained. The distance to the cotyledonary node plays a preponderant role in the expression of shoot forming capacity. Shoot differentiation via seedling cotyledons depends upon the presence of the proximal region of cotyledon regardless of the genotype.  相似文献   

20.
Tissue damage to seedlings can limit their later growth, and the further effects may be greater with increasing seedling age. Seedlings, however, can minimize the effect of damage through compensatory growth. Seedlings of Pharbitis purpurea grow in frequently disturbed habitats and generally tolerate damage to leaf tissues. We evaluated the compensatory responses of the cotyledon to different levels of defoliation and their effect on seedling growth and development. We also examined the relationship between seeding depth and compensatory growth. We tested seven defoliation treatments with one or both cotyledons and/or the apical meristem of seedlings removed from seeds buried at a seeding depth of either 2 or 5?cm. We then measured 12 growth traits of the seedlings to assess development and growth compensation. The area, thickness, biomass, and longevity of the remaining cotyledon were also measured to quantify increased growth as result of treatment effects at both seeding depths. The results showed that defoliation reduced seedling height, belowground length, and total biomass significantly in subsequent growth in all treatments. However, defoliation treatments had direct positive impacts on growth at 2?cm depth compared with 5?cm depth. In contrast, the compensation of cotyledon area (C area), biomass (C mass), and thickness (C thickness) was greater at 5?cm depth than at 2?cm depth. The results thus indicate that P. purpurea seedlings adopted a compensatory growth strategy to resist leaf loss and minimize any adverse effects using the remaining cotyledon. Increasing seeding depth can aggravate the compensatory growth of remain cotyledon after partial defoliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号