首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
Polycomb group (PcG) proteins repress homeotic genes and other developmental regulatory genes in cells where these genes must remain inactive during development. In Drosophila and in vertebrates, PcG proteins exist in two distinct multiprotein complexes, the Esc/Eed-E(z) complex and PRC1. Drosophila PRC1 contains Polycomb, Posterior sexcombs and Polyhomeotic, the products of three PcG genes that are critically needed for PcG silencing. Formation of stable PRC1 requires Ring, the product of a gene for which no mutations have been described. Here, we show that Sex combs extra (Sce) encodes Ring and that Sce/Ring function is critically required for PcG silencing.  相似文献   

8.
Stabilization of chromatin structure by PRC1, a Polycomb complex.   总被引:44,自引:0,他引:44  
The Polycomb group (PcG) genes are required for maintenance of homeotic gene repression during development. Mutations in these genes can be suppressed by mutations in genes of the SWI/SNF family. We have purified a complex, termed PRC1 (Polycomb repressive complex 1), that contains the products of the PcG genes Polycomb, Posterior sex combs, polyhomeotic, Sex combs on midleg, and several other proteins. Preincubation of PRC1 with nucleosomal arrays blocked the ability of these arrays to be remodeled by SWI/SNF. Addition of PRC1 to arrays at the same time as SWI/SNF did not block remodeling. Thus, PRC1 and SWI/SNF might compete with each other for the nucleosomal template. Several different types of repressive complexes, including deacetylases, interact with histone tails. In contrast, PRC1 was active on nucleosomal arrays formed with tailless histones.  相似文献   

9.
10.
11.
12.
The Polycomb (Pc) group genes of Drosophila are negative regulators of homeotic genes, but individual loci have pleiotropic phenotypes. It has been suggested that Pc group genes might form a regulatory hierarchy, or might be members of a multimeric complex that obeys the law of mass action. Recently, it was shown that polyhomeotic (ph) immunoprecipitates in a multimeric complex that includes Pc. Here, we show that duplications of ph suppress homeotic transformations of Pc and Pcl, supporting a mass-action model for Pc group function. We crossed ph alleles to all members of the Polycomb group, and to E(Pc) and Su(z)2 to look for synergistic effects. We observed extragenic noncomplementation between ph(503) and Pc, Psc(1) and Su(z)2(1) in females, and between ph(409) and Sce(1), Scm(D1) and E(z)(1) mutations in males, suggesting that these gene products might interact directly with ph. Males hemizygous for a temperature-sensitive allele, ph(2), are lethal when heterozygous with mutants in Asx, Pc, Pcl, Psc, Sce and Scm, and with E(Pc) and Su(z)2. Mutations in trithorax group genes were not able to suppress the lethality of ph(2)/Y; Psc(1)/+ males. ph(2) was not lethal with extra sex combs, E(z), super sex combs (sxc) or l(4)102EFc heterozygotes, but did cause earlier lethality in embryos homozygous for E(z), sxc and l(4)102EFc. However, ph(503) did not enhance homeotic phenotypes of esc heterozygotes derived from homozygous esc(-) mothers. We examined the embryonic phenotypes of ph(2) embryos that were lethal when heterozygous or homozygous for other mutations. Based on this phenotypic analysis, we suggest that ph may perform different functions in conjunction with differing subsets of Pc group genes.  相似文献   

13.
14.
15.
Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1–MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.  相似文献   

16.
Drosophila Polycomb group proteins are thought to form multimeric nuclear complexes that are responsible for stable transmission of repressed states of gene expression during the proliferation of differentiating embryos. In this study, we cloned, sequenced, and characterized two Polycomb group homologs, designated pc1 and psc1, in zebrafish. Amino acid sequence analyses determined that pc1 is a structural homolog of Drosophila Polycomb and that psc1 is a homolog of Drosophila Posterior sex combs. Northern blots and whole-mount in situ hybridization revealed that pc1 and psc1 had overlapping expression patterns at successive stages of embryogenesis. Immunocytochemistry localized both Pc1 and Psc1 protein in blastomere nuclei. Pull-down assays and two-hybrid system deletion analyses showed that these proteins were capable of homotypic and heterotypic interactions and identified the regions required for these interactions. The evidence supports the idea that zebrafish Polycomb group proteins, like those of other species, form nuclear complexes with compositions that may vary in a spatio-temporal manner during development.  相似文献   

17.
USP7 is a protein deubiquitinase with an essential role in development. Here, we provide evidence that USP7 regulates the activity of Polycomb repressive complex 1 (PRC1) in coordination with SCML2. There are six versions of PRC1 defined by the association of one of the PCGF homologues (PCGF1 to PCGF6) with the common catalytic subunit RING1B. First, we show that SCML2, a Polycomb group protein that associates with PRC1.2 (containing PCGF2/MEL18) and PRC1.4 (containing PCGF4/BMI1), modulates the localization of USP7 and bridges USP7 with PRC1.4, allowing for the stabilization of BMI1. Chromatin immunoprecipitation (ChIP) experiments demonstrate that USP7 is found at SCML2 and BMI1 target genes. Second, inhibition of USP7 leads to a reduction in the level of ubiquitinated histone H2A (H2Aub), the catalytic product of PRC1 and key for its repressive activity. USP7 regulates the posttranslational status of RING1B and BMI1, a specific component of PRC1.4. Thus, not only does USP7 stabilize PRC1 components, its catalytic activity is also necessary to maintain a functional PRC1, thereby ensuring appropriate levels of repressive H2Aub.  相似文献   

18.
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.  相似文献   

19.
Li W  Wang Z  Li J  Yang H  Cui S  Wang X  Ma L 《PloS one》2011,6(6):e21364
Polycomb group protein (PcG)-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT) and FLOWER LOCUS C (FLC). However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号