首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ocean warming can alter natural selection on marine systems, and in many cases, the long‐term persistence of affected populations will depend on genetic adaptation. In this study, we assess the potential for adaptation in the sea urchin Heliocidaris erythrogramma armigera, an Australian endemic, that is experiencing unprecedented increases in ocean temperatures. We used a factorial breeding design to assess the level of heritable variation in larval hatching success at two temperatures. Fertilized eggs from each full‐sibling family were tested at 22 °C (current spawning temperature) and 25 °C (upper limit of predicted warming this century). Hatching success was significantly lower at higher temperatures, confirming that ocean warming is likely to exert selection on this life‐history stage. Our analyses revealed significant additive genetic variance and genotype‐by‐environment interactions underlying hatching success. Consistent with prior work, we detected significant nonadditive (sire‐by‐dam) variance in hatching success, but additionally found that these interactions were modified by temperature. Although these findings suggest the potential for genetic adaptation, any evolutionary responses are likely to be influenced (and possibly constrained) by complex genotype‐by‐environment and sire‐by‐dam interactions and will additionally depend on patterns of genetic covariation with other fitness traits.  相似文献   

2.
Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common‐garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60–65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature‐mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 489–499.  相似文献   

3.
Intraspecific variation in egg size and hatching size, and the genetic and environmental trade‐offs that contribute to variation, are the basis of the evolution of life histories. The present study examined both univariate and multivariate temperature‐mediated plasticity of life‐history traits, as well as temperature‐mediated trade‐offs in egg size and clutch size, in two planktotrophic species of marine slipper limpets, Crepidula. Previous work with two species of Crepidula with large eggs and lecithotrophic development has shown a significant effect of temperature on egg size and hatching size. To further examine the effect of temperature on egg size in Crepidula, the effects of temperature on egg size and hatching size, as well as the possible trade‐offs with other the life‐history features, were examined for two planktotrophic species: Crepidula incurva and Crepidula cf. marginalis. Field‐collected juveniles were raised at 23 or 28 °C and egg size, hatching size, capsules/brood, eggs/capsule, time to hatch, interbrood interval, and final body weight were recorded. Consistent with results for the lecithotrophic Crepidula, egg size and hatching size decreased with temperature in the planktotrophic species. The affects of maternal identity and individual brood account for more than half of the intraspecific variation in egg size and hatching size. Temperature also showed a significant effect on reproductive rate, with time to hatch and interbrood interval both decreasing with increasing temperature. However, temperature had contrasting effects on the number of offspring. Crepidula cf. marginalis has significantly more eggs/capsule and therefore more eggs per brood at 28 °C compared to 23 °C, although capsules/brood did not vary with temperature. Crepidula incurva, on the other hand, produced significantly more capsules/brood and more eggs per brood at the lower temperature, whereas the number of eggs/capsule did not vary with temperature. The phenotypic variance–covariance matrix of life‐history variables showed a greater response to temperature in C. incurva than in C. cf. marginalis, and temperature induced trade‐offs between offspring size and number differ between the species. These differences suggest that temperature changes as a result of seasonal upwelling along the coast of Panama will effect the reproduction and evolution of life histories of these two co‐occurring species differently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

4.
Sequential polyandry may evolve as an insurance mechanism to reduce the risk of females choosing mates who are genetically inferior (intrinsic male quality hypothesis) or genetically incompatible (genetic incompatibility hypothesis). The prevalence of such indirect benefits remains controversial, however, because studies estimating the contributions of additive and nonadditive sources of genetic variation to offspring fitness have been limited to a small number of taxonomic groups. Here, we used artificial fertilization techniques combined with a crossclassified breeding design (North Carolina Type II) to simultaneously test the “good genes hypothesis” and the “genetic incompatibility hypothesis” in the brown toadlet (Pseudophryne bibronii); a terrestrial‐breeding species with extreme sequential polyandry. Our results revealed no significant additive or nonadditive genetic effects on fertilization success. Moreover, they revealed no significant additive genetic effects, but highly significant nonadditive genetic effects (sire by dam interaction effects), on hatching success and larval survival to initial and complete metamorphosis. Taken together, these results indicate that offspring viability is significantly influenced by the combination of parental genotypes, and that negative interactions between parental genetic elements manifest during embryonic and larval development. More broadly, our findings provide quantitative genetic evidence that insurance against genetic incompatibility favors the evolution and maintenance of sequential polyandry.  相似文献   

5.
For natural populations to adapt to anthropogenic threats, heritable variation must persist in tolerance traits. Silver nanoparticles, the most widely used engineered nanoparticles, are expected to increase in concentrations in freshwaters. Little is known about how these particles affect wild populations, and whether genetic variation persists in tolerance to permit rapid evolutionary responses. We sampled wild adult whitefish and crossed them in vitro full factorially. In total, 2896 singly raised embryos of 48 families were exposed to two concentrations (0.5 μg/L; 100 μg/L) of differently sized silver nanoparticles or ions (silver nitrate). These doses were not lethal; yet higher concentrations prompted embryos to hatch earlier and at a smaller size. The induced hatching did not vary with nanoparticle size and was stronger in the silver nitrate group. Additive genetic variation for hatching time was significant across all treatments, with no apparent environmental dependencies. No genetic variation was found for hatching plasticity. We found some treatment‐dependent heritable variation for larval length and yolk volume, and one instance of additive genetic variation for the reaction norm on length at hatching. Our assessment suggests that the effects of silver exposure on additive genetic variation vary according to trait and silver source. While the long‐term fitness consequences of low‐level silver exposure on whitefish embryos must be further investigated to determine whether it is, in fact, detrimental, our results suggest that the evolutionary potential for adaptation to these types of pollutants may be low.  相似文献   

6.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

7.
The embryonic and larval development ofCobitis takatsuensis, a mountain stream spinous loach, was surveyed by incubating artificially inseminated eggs. The mean diameter of the inflated eggs and mean total length of newly-hatched larvae were 2.7 mm and 5.7 mm, respectively. The eggs were spherical, transparent and unpigmented, with a pale yellow yolk and no oil globule. The daily cumulative temperature to hatching was estimated to be 70–110°C. day. Hatched larvae were unpigmented with outer gill filaments on their cheeks, as in otherCobitis species, but the melanophores were comparatively less obvious at each developmental stage. The larvae started feeding eleven days after hatching yolk absorption being completed sixteen days after hatching. All the fin rays were fully developed and the juvenile stage reached at 16 mm TL, 38 days after hatching. Embryonic and larval developmental traits ofC. takatsuensis, such as egg size, clutch size and larval pigmentation, were similar to the Korean species,Niwaella multifasciata, that lives in the upper reaches of the Nak-tong river, andN. delicata, which inhabits Japanese mountain streams, rather than to its congeners. Among cobitine fishes, the spawning of a small number of larger eggs yielding larger larvae without pigmentation, characteristics shared byC. takatsuensis, N. multifasciata andN. delicata, is attributable to adaptation to cold mountain streams.  相似文献   

8.
Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed significantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences reflect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.  相似文献   

9.
Embryonic development and larval morphology of Chromis crusma was described from five nests sampled between 21 and 25 m depth in central Chile (33°S). From each nest, a set of c. 100 randomly selected eggs were hand-collected and transported in seawater to the laboratory. Subsets of c. 30 eggs per nest were maintained in 50 ml glass containers at a constant ambient temperature of c. 12°C (range 11.5–12.9°C). Egg length (L) and width (W) and larval notochordal length (LN) were measured from photographs. Geometric morphometric analyses were performed in newly hatched and 1 week old larvae to quantify shape changes. Ellipsoid eggs had an average (mean ± SE) size of 1.12 ± 0.05 mm L and 0.67 ± 0.02 mm W, with volume being similar throughout 15 developmental stages (i.e., ellipsoid-shaped; 0.27 mm3). Planktonic larvae hatched between 5 and 11 days at 12°C and had a mean LN of 3.13 ± 0.25 mm, a yolk sack volume of 0.03 mm3 and an oil droplet volume of 0.005 mm3. Morphological traits at hatching included: (a) lack of paired fins and jaws; (b) single medial fin fold; (c) lack of eye pigmentation; (d) yolk sac present near anterior tip; (e) melanophores distributed along ventral surface with one pair over the forehead. In order to generate an up-to-date summary of developmental traits within Pomacentridae, we reviewed literature on egg development (e.g., shape and number of oil droplets), hatching and larval traits (e.g., morphology, pigmentation patterns). Thirty-two publications accounting for 35 species were selected, where eggs, embryonic development, hatching and larval traits were found for 26, 21, 24 and 34 species, respectively. In order to evaluate potential phylogenetic and environmental relationships within the early stages of Pomacentridae, cluster analyses (Bray Curtis similarity, group average) were also performed on egg and larval traits of 22 species divided by subfamily (Stegastinae, Chrominae, Abudefdufinae, Pomacentrinae) and thermal ranges (i.e., low: 16.5°C (range: 12–21°C), medium: 24.5°C (range:21–28°C) and high: 27°C (range: 26–28°C)), suggesting that early developmental patterns can be segregated by both temperature and phylogenetic relationships.  相似文献   

10.
It is important to understand parental effects on early life history of fish as manifested, for example, in individual fitness of offspring. Immediately after fertilization, parental contributions (both genetic and non‐genetic) to embryos will affect larval ontogeny, physiology, morphology and survival. In marine fish, rates of natural mortality are highest during early life and are negatively correlated with rates of growth and body size. In these early life stages (eggs, larvae, young juveniles) subtle differences in mortality can cause large differences in recruitment and year‐class success. Therefore, it is particularly critical to understand factors that contribute to variability in mortality during early life. This study focuses on evaluating the potential influence of paternity on rates of mortality and development in eggs and larvae of Northwest Atlantic cod, Gadus morhua. To accomplish this 12 males and two females were crossed using a full‐factorial breeding design. Paternity had a strong influence on fertilization success, hatching success, cumulative embryonic mortality, larval standard length, eye diameter, yolk‐sac area, and cumulative larval mortality. Female 1 showed an overall ‘weaker’ performance of offspring than Female 2, indicating that deviances can stem from differences in female quality. Nevertheless, paternal contributions to embryonic and larval development were still evident despite differences in female quality, showing that sire effects on offspring are undeniable and can serve as important sources of variation during early life stages in fishes. Overall, these findings have implications for furthering the understanding of recruitment variability and can be used to optimize reproductive output for the aquaculture industry. In addition, the data suggests that the choice of mate during spawning can play a large role in offspring fitness.  相似文献   

11.
The present study aimed to characterize the embryogenesis and larval development of matrinchã (Brycon orthotaenia), through the analysis of egg and larval morphology. Fertilized eggs had a mean diameter of 1.17 mm, with yolk occupying most of the egg (1.06 mm). Embryogenesis lasted for 15 hr at an average temperature of 27°C. At hatching, yolk-sac larvae measured 3.67 mm in mean standard length (SL). Pre-flexion, flexion and post-flexion larva had 5.01, 8.24 and 11.88 mm mean SL, respectively, with significant increases observed particularly in head length, head height, and eye diameter. The yolk persisted in the yolk-sac and pre-flexion stages (5.96 mm SL). The mouth opening could first be observed 13 hr after hatching, and cannibalism was observed 29 hr after hatching in pre-flexion larvae after absorption of the yolk sac; in such cases, the larvae had already developed teeth and a complete digestive tract. For an endangered species such as matrinchã, early life history studies are important because they provide researchers with a better understanding of critical stages of development and thus enhance captive management by rearing and restocking of the species.  相似文献   

12.
Maternal inputs to offspring early in development are initially high but the process of development suggests that ontogenetic shifts in the importance of maternal genetic variation relative to other sources should occur. We investigated additive genetic variance and covariance for direct (animal), sire, and maternal effects on embryonic length (EL), yolk sac volume (YSV), and alevin (after yolk sac resorption) length (AL) for 460 embryonic and 460 alevin brook charr (Salvelinus fontinalis) in 23 half-sib families (12 sires, 23 dams). There were no additive genetic effects of sires or individual animals on their own phenotype using sire-dam and maternal-animal models for YSV or EL (h(a)2 < 0.05). However, at the alevin stage we detected low but significant heritability for AL (h(a)2 = 0.14 +/- 0.11). Conversely, maternal genetic effects were high for both embryonic traits (h(EL)2 = 0.61 +/- 0.05; h(YSU)2 = 0.57 +/- 0.06) but faded rapidly for postresorption length (h(AL)2 = 0.18 +/- 0.04). Maternal effects in the sire-dam model corresponded highly with those in the animal-dam model. We did not detect significant genetic covariance between progeny and dams for preresorption traits or between sires and dams for any trait. However, following resorption of the yolk sac, the genetic value of dams for AL was negatively correlated with that of individual progeny (r(m,a) = -0.38 +/- 0.13), suggesting trade-offs and/or stabilizing selection between maternal and animal genetic trait value. This finding was supported by models of dam fecundity on offspring length and dam weight in phenotypic space. Heritability estimates using simple regression of embryo phenotype on adult parental phenotype produced upwardly biased estimates of genetic variance (h2 > 1.0). We propose that development through the embryo-alevin boundary may be a major point in salmonids for ontogenetic changes in the genetic architecture of embryo size from maternal genetic effects to those of the individual organism, and that maternal-offspring conflicts in resource allocation related to size may be partially indicated by negative genetic covariance.  相似文献   

13.
Selective mortality within a population, based on the phenotype of individuals, is the foundation of the theory of natural selection. We examined temperature-induced shifts in the relationships among early life history traits and survivorship over the embryonic and larval stages of a tropical damselfish, Pomacentrus amboinensis. Our experiments show that temperature determines the intensity of selective mortality, and that this changes with ontogeny. The size of energy stores determined survival through to hatching, after which egg size became a good indicator of fitness as predicted by theoretical models. Yet, the benefits associated with egg size were not uniform among test temperatures. Initial egg size positively influenced larval survival at control temperature (29 °C). However, this embryonic trait had no effect on post-hatching longevity of individuals reared at the higher (31 °C) and lower (25 °C) end of the temperature range. Overall, our findings indicate that the outcome of selective mortality is strongly dependent on the interaction between environment conditions and intrinsic developmental schedules.  相似文献   

14.
Laboratory‐validated data on the survival, development and hatching responses of fertilized Pacific cod Gadus macrocephalus eggs from the northern Japan stock were determined through an incubation experiment. The optimum temperature for survival until hatching ranged from 4 to 8° C. No significant difference in development rates was found between the populations from Mutsu Bay, Japan, and western Canadian coastal waters even though the samples may belong to different G. macrocephalus stocks. Gadus macrocephalus larvae hatched asynchronously from egg batches despite incubation under the same environment during their development. Both incubation temperature and temperature‐mediated hatch rank affect size and yolk reserve. These data suggest that variations in water temperatures within an ecological range markedly influence the development rates, survival and hatching of the eggs, as well as the stage at hatch larvae of G. macrocephalus. Asynchronous hatching and the production of offspring with variable sizes and yolk reserves are considered evolutionary bet‐hedging strategies that enable the species to maximize their likelihood of survival in an environment with variable temperatures.  相似文献   

15.
The effect of incubation temperature (2, 4, 6, 8 and 10° C) on haddock Melanogrammus aeglefinus development and growth during the embryonic period and in subsequent ontogeny in a common post‐hatch thermal environment (6° C) was investigated. Hatching times were inversely proportional to incubation temperature and ranged from 20·3 days at 2° C to 9·1 days at 10° C. Growth rates were directly proportional to incubation temperature during both the embryonic and larval periods. There was a significant decline in growth rates following hatch in all temperature groups. Compared to the endogenously feeding embryos, growth rates in the exogenous period declined by 4·4‐fold at 4° C to 3·9‐fold at 8° C, indicative of the demarcation between the endogenous and exogenous feeding periods. Yolk utilization varied from 17 days at 2° C to 6 days at 10° C and followed a three‐stage sigmoidal pattern with the initial lag period inversely proportional to incubation temperature. Time to 50% yolk depletion varied inversely with temperature but occurred 1–1·5 days post‐hatch at all temperatures. Additionally, the period between 10 and 90% yolk depletion also decreased with increased temperature. Overall developmental rate was sequential with and directly proportional (2·3‐fold increase) to incubation temperature while the time spent in each developmental stage was inversely proportional to temperature. Larger embryos tended to be produced at lower temperatures but this pattern reversed following hatch, as larvae from higher temperature groups grew more rapidly than those from other temperature groups. Larvae from all temperatures achieved a similar length (c.total length 4·5 mm) upon complete yolk absorption. The study demonstrated the significant impact that temperature has upon developmental and growth rates in both endogenous and exogenous feeding periods. It also illustrated that temperature changes during embryogenesis had significant and persistent effects on growth in subsequent ontogeny.  相似文献   

16.
The effects of multiple predators on their prey are frequently non‐additive because of interactions among predators. When prey shift habitats through ontogeny, many of their predators cannot interact directly. However, predators that occur in different habitats or feed on different prey stages may still interact through indirect effects mediated by prey traits and density. We conducted an experiment to evaluate the combined effects of arboreal egg‐stage and aquatic larval‐stage predators of the African treefrog, Hyperolius spinigularis. Egg and larval predator effects were non‐additive – more Hyperolius survived both predators than predicted from their independent effects. Egg‐stage predator effects on aquatic larval density and size and age at hatching reduced the effectiveness of larval‐stage predators by 70%. Our results indicate that density‐ and trait‐mediated indirect interactions can act across life‐stages and habitats, resulting in non‐additive multi‐predator effects.  相似文献   

17.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

18.
Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non‐degradable artificial water‐containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch‐rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch‐rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco‐physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.  相似文献   

19.
The body size of a univoltine carabid beetle Carabus tosanus on Shikoku Island, Japan, was clearly smaller in higher‐altitude populations (subspecies), which possibly represents incipient speciation. To explore the determinants of altitudinal differences in body size in this species, we studied the degree of phenotypic plasticity by conducting rearing experiments at two constant temperatures and examined genetic differences through interpopulation crosses. At 15 °C, C. tosanus had a longer developmental period and a shorter adult body than at 20 °C. Nevertheless, variation in body size due to temperature effects (phenotypic plasticity) was small compared to the interpopulation differences, which suggests substantial genetic differences between populations (subspecies) at different altitudes. In F1 offspring from crosses between a low‐altitude (subspecies tosanus) and a high‐altitude population (subspecies ishizuchianus), adult body length was affected by the genotypes of both parents, with an interaction effect of parental genotype and offspring sex. Further analyses revealed that adult body length was affected by sex‐linked factors in addition to autosomal factors. These genetic differences in body size may have resulted from adaptations to different altitudes and may be important for the process of incipient speciation because body size differences could contribute to premating reproductive isolation.  相似文献   

20.
Contrary to many separate sex systems, the evolutionary ecology of polyandry in simultaneous hermaphrodites, and in particular in those with internal fertilization, has received little attention. Recent studies on the promiscuous gastropod Chelidonura sandrana showed that offspring size, an important determinant of offspring performance in many marine invertebrates, varies with the number of different mating partners. However, the source of this differential allocation by mothers remained unclear. Using a quantitative genetic model, we here tested for parental effects on offspring size and the importance of ‘good gene’ effects on early life history traits. Our analysis revealed no significant sire but strong dam effects for all investigated traits. Moreover, embryo viability tended to increase with egg capsule volume, thus linking offspring size with offspring performance. Our findings suggest that in C. sandrana (1) differential allocation is a maternal effect in response to the number of different partners, and that (2) additive genetic variance is of negligible importance in early life history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号