首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Numerous studies have demonstrated that FTO plays an important role in adipogenesis. Herein, we designed a small interfering RNA targeting FTO to knock down its endogenous expression and investigated its effects on the proliferation and differentiation of porcine intramuscular preadipocytes. Its possible mechanism was also investigated. We showed that FTO silencing significantly decreased the level of phospho-Histone H3 protein and inhibited the proliferation of porcine intramuscular preadipocytes. In addition, the expressions of peroxisome proliferators-activated receptor γ (PPARγ) and CAAT/enhancer binding protein (C/EBPα) were down-regulated, but the expression of β-catenin was up-regulated, by FTO silencing. Of specific interest here was that LiCl, a Wnt/β-catenin signaling specific activator, attenuated the FTO-induced upregulation of PPARγ and downregulation of β-catenin. Collectively, our data demonstrated that FTO silence decreased the proliferation and differentiation of porcine intramuscular preadipocytes, and FTO affects the porcine intramuscular preadipocytes differentiation might be via Wnt/β-catenin signaling pathway.  相似文献   

4.
5.
6.
7.
Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO(2) have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII(-/-) MEFs compared with CAIII(+/+) cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-γ2 (PPARγ2) and CCAAT/enhancer binding protein-α. We found a considerable (approximately 1000-fold) increase in the PPARγ2 expression in the CAIII(-/-) MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPARγ2 and FABP4. When both CAIII and PPARγ2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPARγ2 gene expression.  相似文献   

8.
9.
10.
11.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

12.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

13.
Flame retardants, specifically polybrominated diphenyl ethers (PBDEs), are chemical compounds widely used for industrial purposes and household materials. NHANES data indicate that nearly all Americans have trace amounts of PBDEs in serum, with even higher levels associated with occupational exposure. PBDEs are known to bioaccumulate in the environment due to their lipophilicity and stability, and more importantly, they have been detected in human adipose tissue. The present study examined whether the PBDE congener, BDE‐99 (2,2′,4,4′,5‐pentabromodiphenyl ether; 0.2‐20 μM), enhances the adipogenesis of mouse and human preadipocyte cell models in vitro via induced lipid accumulation. 3T3‐L1 mouse preadipocytes and human visceral preadipocytes demonstrated enhanced hormone‐induced lipid accumulation upon BDE‐99 treatment. In addition, BDE‐99 (20 μM) induced preadipocyte differentiation and lipid development in nondifferentiated human preadipocytes. BDE‐99, the second most abundant congener in human adipose tissue, increased total lipids in differentiating adipocytes and therefore showed a potential role in the regulation of adipogenesis. This warrants more research to further understand the impact of lipophilic persistent pollutants on adipose tissue homeostasis.  相似文献   

14.
SK Lee  JO Lee  JH Kim  N Kim  GY You  JW Moon  J Sha  SJ Kim  YW Lee  HJ Kang  SH Park  HS Kim 《Cellular signalling》2012,24(12):2329-2336
Coenzyme Q10(CoQ10) is a known anti-adipogenic factor. However, the mechanism by which CoQ10 acts is unclear. In this study, we found that CoQ10 increased the phosphorylation of AMP-activated protein kinase (AMPK) in 3T3-L1preadipocytes. CoQ10 induced an increase in cytoplasmic calcium concentrations, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. Either inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) or knock-down CaMKK blocked CoQ10-induced AMPK phosphorylation, suggesting the involvement of calcium in CoQ10-mediated AMPK signaling. CoQ10 also increased the expression of peroxisome proliferator-activated receptor alpha (PPARα) at both the mRNA and protein levels. Knock down of AMPK with siRNA or inhibition of AMPK using an AMPK inhibitor compound C blocked CoQ10-induced expression of PPARα, indicating that AMPK plays a critical role in PPARα induction. In addition, CoQ10 increased fatty acid oxidation in 3T3-L1preadipocytes. The promoter activity of PPARα was increased by CoQ10 in an AMPK-dependent fashion. Moreover, the induction of acyl-CoA oxidase (ACO), a target gene of PPARα, was blocked under the PPARα knock down condition. Furthermore, treatment with CoQ10 blocked differentiation-induced adipogenesis. This blockade was not observed under the PPARα knock-down condition. Collectively, these results demonstrate that CoQ10 induces PPARα expression via the calcium-mediated AMPK signal pathway and suppresses differentiation-induced adipogenesis.  相似文献   

15.
16.
17.
18.
Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPβ to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.  相似文献   

19.
Since the worldwide increase in obesity represents a growing challenge for health care systems, new approaches are needed to effectively treat obesity and its associated diseases. One prerequisite for advances in this field is the identification of genes involved in adipogenesis and/or lipid storage. To provide a systematic analysis of genes that regulate adipose tissue biology and to establish a target-oriented compound screening, we performed a high throughput siRNA screen with primary (pre)adipocytes, using a druggable siRNA library targeting 7,784 human genes. The primary screen showed that 459 genes affected adipogenesis and/or lipid accumulation after knock-down. Out of these hits, 333 could be validated in a secondary screen using independent siRNAs and 110 genes were further regulated on the gene expression level during adipogenesis. Assuming that these genes are involved in neutral lipid storage and/or adipocyte differentiation, we performed InCell-Western analysis for the most striking hits to distinguish between the two phenotypes. Beside well known regulators of adipogenesis and neutral lipid storage (i.e. PPARγ, RXR, Perilipin A) the screening revealed a large number of genes which have not been previously described in the context of fatty tissue biology such as axonemal dyneins. Five out of ten axonemal dyneins were identified in our screen and quantitative RT-PCR-analysis revealed that these genes are expressed in preadipocytes and/or maturing adipocytes. Finally, to show that the genes identified in our screen are per se druggable we performed a proof of principle experiment using an antagonist for HTR2B. The results showed a very similar phenotype compared to knock-down experiments proofing the "druggability". Thus, we identified new adipogenesis-associated genes and those involved in neutral lipid storage. Moreover, by using a druggable siRNA library the screen data provides a very attractive starting point to identify anti-obesity compounds targeting the adipose tissue.  相似文献   

20.
Adipocyte lines are a useful tool for adipocyte research. Recently, a new preadipocyte line designated AP‐18 was established from subcutaneous tissue of the C3H/He mouse. In this study, we further characterized AP‐18 cells. Adipocyte differentiation was assessed by accumulation of fat droplets stained by Oil Red O. The expression of the preadipocyte‐ or adipocyte‐specific genes and adipocytokine genes was analysed qualitatively by RT‐PCR and quantitatively by real‐time PCR in comparison with the LM cell, a murine fibroblast line, and the 3T3‐L1 cell, respectively. AP‐18 cells were fibroblastoid in maintenance culture. After the confluence, fat droplets were accumulated in 50–60% of the cells cultured in the medium alone and in 70–90% of the cells cultured with insulin within 2 to 3 weeks. The fat accumulation was not promoted by the addition of dexamethazone, IBMX (3‐isobutyl‐1‐methylxanthine) or troglitazone in combination with insulin, which were obligatory for differentiation of the 3T3‐L1 cell, a murine preadipocyte line. Throughout the differentiation, AP‐18 cells expressed Pref‐1, LPL, C/EBPβ, C/EBPδ, RXRα, C/EBPα, PPARγ, RXRγ, aP2, GLUT4, SCD1, UCP2, UCP3, TNFα, resistin, leptin, adiponectin and PAI‐1 genes, but not the UCP1 gene, indicating that the cell is derived from WAT (white adipose tissue). The time course of these gene expressions was similar to that of 3T3‐L1 cells, although the expressions were slower and lower in AP‐18 cells. These data indicate that AP‐18 cells are preadipocytes originated from WAT and differentiate into adipocytes under more physiological conditions than 3T3‐L1 cells. AP‐18 may be useful in adipocyte research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号