首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atlantic sturgeon Acipenser oxyrinchus aggregate to feed from May to October in Minas Basin (45° N; 64° W), a large, cul‐de‐sac embayment of the inner Bay of Fundy. The aggregation consists mainly of migrants from the Saint John, NB and Kennebec Rivers, ME (99%). During 2004–2015, 4393 A. oxyrinchus were taken as by‐catch by commercial fish trawlers or at intertidal fishing weirs, and 1453 were marked and/or sampled and released. Fork length (LF) ranged from 458 to 2670 mm, but 72·5% were <1500 mm. Mass (M) ranged from 0·5 to 58·0 kg. The mass‐length relationship for fish ≤50 kg was log10M = 3·32log10LF ? 5·71. Observed growth of unsexed A. oxyrinchus recaptured after 1–8 years indicated fish of 90–179 cm LF grew c. 2–4 cm a year. Ages obtained from pectoral spines were from 4 to 54 years. The Von Bertalanffy growth model predicted K = 0·01 and L = 5209 mm LF. Estimated annual mortality was 9·5–10·9%. Aggregation sizes in 2008 and 2013 were 8804 and 9244 individuals, respectively. Fish exhibited high fidelity for yearly return to Minas Basin and population estimates indicated the total at‐sea number utilizing the Basin increased from c. 10 700 in 2010 to c. 37 500 in 2015. Abundance in the Basin was greatest along the north shore in spring and along the south shore in summer, suggesting clockwise movement following the residual current structure. Marked individuals were recaptured in other bays of the inner Bay of Fundy, north to Gaspé, Quebec, and south to New Jersey, U.S.A., with 26 recoveries from the Saint John River, NB, spawning run. Fish marked at other Canadian and U.S. sites were also recovered in Minas Basin. Since all A. oxyrinchus migrate into and out of the Basin annually they will be at risk of mortality if planned tidal power turbines are installed in Minas Passage.  相似文献   

2.
In an effort to explore the thermal limitations of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, the critical thermal maxima (Tcmax) of 1+ year Lake Nanita strain O. c. pleuriticus were evaluated when acclimated to 10, 15 and 20° C. The mean ±s.d. Tcmax for O. c. pleuriticus acclimated to 10° C was 24·6 ± 2·0°C (n = 30), for 15° C‐acclimated fish was 26·9 ± 1·5° C (n = 23) and for 20° C‐acclimated fish was 29·4 ± 1·1° C (n = 28); these results showed a marked thermal acclimation effect (Q10 = 1·20). Interestingly, there was a size effect within treatments, wherein the Tcmax of larger fish was significantly lower than that of smaller fish acclimated to the same temperature. The critical thermal tolerances of age 0 year O. c. pleuriticus were also evaluated from three separate populations: Lake Nanita, Trapper Creek and Carr Creek reared under ‘common‐garden’ conditions prior to thermal acclimation. The Trapper Creek population had significantly warmer Tcmax than the Lake Nanita population, but that of the Carr Creek fish had Tcmax similar to both Trapper Creek and Lake Nanita fish. A comparison of these O. c. pleuriticus Tcmax results with those of other stream‐dwelling salmonids suggested that O. c. pleuriticus are less resistant to rapid thermal fluctuations when acclimated to cold temperatures, but can tolerate similar temperatures when acclimated to warmer temperatures.  相似文献   

3.
The critical thermal maxima (TMAX) of threadfin shad Dorosoma petenense exposed to standardized stress (30 s handling in a dip‐net), simulating stressors endured during fish loading before transport, were measured over a range of holding temperatures (15, 20 and 25° C). Dorosoma petenense TMAX showed a significant thermal effect, displaying mean ±s.d . critical thermal maxima of 26·5 ± 1·6, 30·9 ± 1·2 and 33·3 ± 1·4° C, when tested at temperatures of 15, 20 and 25° C, respectively. Dorosoma petenense TMAX levels were also affected by stress, with handled fish showing significantly lower values than control fish exposed to 15 (mean ±s.d . TMAX = 25·6 ± 2·0° C), 20 (27·6 ± 2·8° C) and 25° C (32·0 ± 2·6° C). In addition to providing basic information on D. petenense thermal tolerance, experimental results suggest that fishery managers should consider the whole suite of potential stressors, such as air exposure during handling and fish loading, when developing management criteria.  相似文献   

4.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   

5.
Prolonged swimming performances of two as yet unnamed species of three‐spined stickleback, Gasterosteus spp., were compared. The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, Texada Island, British Columbia, Canada, and are recent, morphologically distinct species. Limnetics had longer endurance during prolonged swimming than did benthics. The mean regression of the log10 of fatigue time (Ft, s) on swimming speed (U, standard length, LS s?1) for limnetics (log10Ft = 7·03 ? 0·46U) had a similar slope, but a significantly higher intercept than that for benthics (log10Ft = 5·55 ? 0·43U). Adult benthics were larger, heavier and deeper‐bodied fish than limnetics. Limnetics, however, had a significantly greater pectoral fin edge:base ratio (mean ± s .e .: limnetics, 4·58 ± 0·43; benthics, 3·63 ± 0·27). In addition, limnetics had significantly lower drag coefficients (CD) than benthics (limnetics, log10CD = ?0·49log10Re + 0·66; benthics, log10CD = ?0·26log10Re ? 0·30) where Re is the Reynolds number [(LSU?1), where U and ν are swimming velocity and the kinematic viscosity of the water, respectively]. Compared to their ancestral form, the anadromous three‐spined stickleback Gasterosteus aculeatus L., limnetics and benthics had significantly longer and shorter endurance times, respectively. In addition, both these fishes had significantly higher fast‐start velocities than their ancestral form. Selection due to differential resource use may have lead to divergence of body form, and, therefore, of steady swimming performance. Therefore predation may be the selective force for the similar high escape performance in these two fishes.  相似文献   

6.
Aim: To determine the minimal conditions (temperature–time), necessary to achieve set sanitation targets for selected microbial indicators during the continuous thermal treatment of pig slurry. Methods and Results: The effectiveness of thermal treatment between 55 and 96°C was studied using Escherichia coli, enterococci, sulfite‐reducing Clostridia (SRC), mesophilic culturable bacteria (MCB), F+‐specific and somatic phages. Identification of SRC and MCB was performed using 16S rRNA gene analysis. Ten minutes at 70°C or 1 h at 60°C was sufficient to reduce the vegetative bacteria by 4–5 log10, but it had little effect on somatic phages nor on spore formers, dominated by Clostridium sp. At 96°C, somatic phages were still detected, but there was a reduction of 3·1 log10 for SRC and of 1·4 log10 for MCB. At 96°C, Clostridium botulinum was identified among the thermotolerant MCB. Conclusion: Only those hygienic risks relating to mesophilic vegetative bacteria can be totally eliminated from pig slurry treated at 60°C (60 min) or 70°C (<10 min). Significance and Impact of the Study: Hygiene standards based on the removal of the indicators E. coli and enterococci can easily be met by treatment as low as 60°C (enabling, a low‐cost treatment using heat recovery). However, even at 96°C, certain pathogens may persist.  相似文献   

7.
Total length (LT) (range 24–1000 mm; mean ±s.e . = 170·21 ± 0·36 mm) and mass (W) (range 0·10–9590 g; mean ±s.e . = 76·03 ± 0·87 g) of 36 460 specimens of marble trout Salmo marmoratus were used to compute a standard mass (Ws) equation for this species by means of the empirical percentile (EmP) method. The EmP Ws equation calculated was: log10Ws = ?5·208 + 3·202 log10LT? 0·046 (log10LT)2 (LT range 90–570 mm) and it is valid throughout the species' area of distribution across Europe.  相似文献   

8.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

9.
The main finding of this study was that measuring maximum heart rate during incremental warming was an effective tool to estimate upper thermal limits in three small cyprinid Danio species, which differed significantly. Arrhenius breakpoint temperature for maximum heart rate, purportedly an index of optimum temperature, was 21·2 ± 0·4, 20·1 ± 0·4 and 18·9 ± 0·8° C (mean ± s.e .) for zebrafish Danio rerio, pearl danio Danio albolineatus and glowlight danio Danio choprae, respectively. The temperature where cardiac arrhythmias were first induced during warming (Tarr) was 36·6 ± 0·7, 36·9 ± 0·8 and 33·2 ± 0·8° C (mean ± s.e .) and critical thermal maximum (TCm) was 39·9 ± 0·1, 38·9 ± 0·1 and 37·2 ± 0·1° C (mean ± s.e .) for D. rerio, D. albolineatus and D. choprae, respectively. The finding that Tarr was consistently 3–4° C lower than TCm suggests that collapse of the cardiac life support system may be a critical trigger for upper temperature tolerance. The upper thermal limits established here, which correlate well with a broad natural environmental temperature range for D. rerio and a narrow one for D. choprae, suggest that upper thermal tolerance may be a genetic trait even among closely related species acclimated to common temperatures.  相似文献   

10.
During roosting in summer, reproductive female bats appear to use torpor less frequently and at higher body temperatures (T b) than male bats, ostensibly to maximise offspring growth. To test whether field observations result from differences in thermal physiology or behavioural thermoregulation during roosting, we measured the thermoregulatory response and energetics of captive pregnant and lactating female and male long-eared bats (Nyctophilus geoffroyi 8.9 g and N. gouldi 11.5 g) during overnight exposure to a constant ambient temperature (T a) of 15°C. Bats were captured 1–1.5 h after sunset and measurements began at 21:22±0:36 h. All N. geoffroyi entered torpor commencing at 23:47±01:01 h. For N. gouldi, 10/10 males, 9/10 pregnant females and 7/8 lactating females entered torpor commencing at 01:10±01:40 h. The minimum T b of torpid bats was 15.6±1.1°C and torpid metabolic rate (TMR) was reduced to 0.05±0.02 ml O2 g−1 h−1. Sex or reproductive condition of either species did not affect the timing of entry into torpor (F=1.5, df=2, 19, P=0.24), minimum TMR (F=0.21, df=4, 40, P=0.93) or minimum T b (F=0.76, df=5, 41, P=0.58). Moreover, sex or reproductive condition did not affect the allometric relationship between minimum resting metabolic rate and body mass (F=1.1, df=4, 37, P=0.37). Our study shows that under identical thermal conditions, thermal physiology of pregnant and lactating female and male bats are indistinguishable. This suggests that the observed reluctance by reproductive females to enter torpor in the field is predominantly because of ecological rather than physiological differences, which reflect the fact that females roost gregariously whereas male bats typically roost solitarily.  相似文献   

11.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

12.
Mass‐specific oxygen consumption rate, i.e. standard metabolic rate (Rs) and critical oxygen tension (Pcrit) of red drum Sciaenops ocellatus were measured and scaled over a 2500‐fold range in mass (MF; 0·26–686 g). Rs conformed to well established models (Rs = 3·73·91 MF?0·21; r2 = 0·86) while Pcrit increased over the size range (Pcrit = 3·15 log10MF + 16·19; r2 = 0·44). This relationship may be ecologically advantageous as it would allow smaller S. ocellatus to better utilize hypoxic zones as habitat and refuge from predators.  相似文献   

13.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

14.
Lactose monolaurate (LML) was previously found to be an antimicrobial against Listeria monocytogenes in culture medium at concentrations between 3 and 5 mg ml?1. In this study, the microbial inhibitory activity of LML in dairy products inoculated with a 5‐strain cocktail of clinical isolates of L. monocytogenes was investigated. Addition of LML at a concentration of 5 mg ml?1 resulted in 4·4, 4·0 and 4·2 log reductions in 0·5% fat, 1% fat and 3·25% fat milks, respectively; 4·1, 4·4, and 3·5 log reductions in nonfat, 1% fat, and 1·5% fat yogurts, respectively; and 4·0 log reductions in both nonfat and 2% fat cottage cheese. The inhibitory effect of LML was only observed at 37°C and not 5°C. Experiments suggest that both the lauric acid and the esterified lactose moiety of LML play roles in the growth inhibition.

Significance and Impact of the Study

A novel sugar ester, lactose monolaurate, inhibited the growth of a five‐strain cocktail of Listeria monocytogenes in milk, yogurt and cottage cheese. This is the first report of the use of a sugar ester to inhibit the growth of Listeria in food systems.  相似文献   

15.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

16.
Freezing and high temperature thresholds of photosystem 2 (PS2), ice formation and frost and heat damage were measured in leaves of evergreen subalpine plants under conditions of naturally low (winter) to high (summer) PS2 efficiencies (FV/FM). The temperature‐dependent change in basic Chl fluorescence (F0) (T‐F0) technique that is usually used to assess the high temperature threshold of PS2 in a new approach was applied to test freezing temperature thresholds of PS2. T‐F0 curves (+5 °C to ?10 °C at 2 K h?1) revealed a significant, sudden increase in F0 on extracellular ice formation (?4.0 or ?5.5 °C). The rise in F0 was recorded 0.3–0.6 K below ice nucleation (10–20 min later) and was produced by freeze dehydration of cells. The rise in F0 was not caused by frost damage, as during winter LT50 was lower than ?27 °C and not by formation of ice on the leaf surface. Hence, F0 measurements during freezing are a useful tool to distinguish between surface ice and extracellular ice inside the leaf tissue which cannot be differentiated by other ice‐detecting methods. PS2 efficiency significantly affected the shape of the high temperature T‐F0 curves (20–65 °C at 1 K min?1). Under FV/FM >0.6, two F0 maxima were recorded. The fast rise phase to the first F0 maximum corresponded with tissue heat damage (LT50: 46.9–54.3 °C). The second F0 maximum occurred at leaf temperatures between 55 and 60 °C. Under FV/FM <0.2 only, the second F0 maximum was detectable. Lack of awareness of the missing F0 maximum would lead to an overestimation of the PS2 high temperature threshold by >10 K; hence, under low FV/FM, it cannot be determined by the T‐F0 technique.  相似文献   

17.
Aims: To study the accumulation of vegetative cells and endospores of Alicyclobacillus, as well as viable aerobic counts during the continuous production of apple juice concentrate. Methods and Results: Apples were processed for a continuous process running time of 108 h (processing rate 1·8–2·0 t h?1) without clean‐in‐place (CIP) procedures in‐between different batches. Samples from single‐strength apple juice, concentrate after evaporation (±30°Brix), the final product (concentrate pasteurized at 102–104°C for 90 s) and condensate water (by‐product of the juice concentration process) were collected every 12 h. From 12 to 84 h of processing, vegetative Alicyclobacillus counts in single‐strength apple juice increased significantly (P < 0·05) from 1 to 3·15 log10 CFU ml?1. Accumulation patterns of vegetative cells in apple concentrate and the final product were similar from 24 to 84 h of processing, with the respective counts increasing from 0·13 to 1·63 and 0·01 to 1·69 log10 CFU ml?1. The highest Alicyclobacillus endospore counts in single‐strength juice, concentrate and the final product was at 84 h of processing with 1·32, 1·59 and 1·64 log10 CFU ml?1, respectively. Conclusions: Alicyclobacillus vegetative cells and endospores accumulate in fruit concentrates during a continuous process running time of 108 h. Significance and Impact of the Study: In conjunction with good manufacturing practices, fruit concentrate manufactures can minimize Alicyclobacillus accumulation in fruit concentrates by limiting the continuous process running time between clean‐ups to under 84 h.  相似文献   

18.
Oxygen consumption rates (QO2) of laboratory reared stage one zoeae of Pandalus borealis (Krøyer) at 1.5, 3, 4.5, 6, and 9°C were 1.5, 2.2, 2.6, 3.6 and 4.1μ O2 · mg?1 · h?1, respectively. These values of QO2 correspond to 0.26, 0.38, 0.44, 0.60, and 0.70 μl O2 · individual?1 · h?1. At 10.5 °C oxygen consumption rates decreased suggesting thermally induced respiratory stress.The equation log10QO2 = 0.55 log10T°C + 0.086 describes the relationship between QO2 (μl O2 · mg?1 · h?1) and sea-water temperature between 1.5 and 9°C. Corresponding values of QO2 for an individual (μl O2 · h?1) exhibited the relationship log10QO2 = 0.55 log10T°C ?0.686.The minimum daily metabolic caloric requirements for an individual zoea ranged from 0.04 at 3 °C to 0.07 calories per day at 8 °C. The number of calories ingested daily ranged from 0.4 to 0.5 at 3 to 8 °C.  相似文献   

19.
Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long‐term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short‐term temperature (T) response and sensitivity of leaf respiration (R), the high‐T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high‐resolution measurements of R across a range of measuring Ts (25–70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax). Although growth temperature did not affect Tmax, N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.  相似文献   

20.
This study was performed to validate the shelf life of commercial sachet-packed drinking water produced in the Benin City metropolis, Edo State, Nigeria. Seven brands of sachet-packed water that were freshly produced by manufacturers were collected from respective factories and subjected to standard physicochemical and microbial tests. The colour of all water brands (0·0–5·6 HU) was within the limits recommended by the World Health Organization (WHO) (≤15 HU) while the temperature (26·9–28·4°C) was above the limits recommended by WHO (≤25·0°C). The pH reported in brands 1 and 6 at week 8 of storage was below WHO recommended limits (6·5–9·5). At week 8 of storage, brands 1 and 6 had HPC (3·97–4·70 log10 CFU per ml) that were above WHO/National Agency for Food and Drug Administration and Control (NAFDAC) recommended limits (≤2 log10 CFU per ml) while TCC (<1 MPN 100 ml−1) in all brands were within recommended limits (≤10 MPN 100 ml−1). No thermo-tolerant Coliforms and Cryptosporidium were present in all brands; though, Streptococcus faecalis was detected in brand 6. Based on WHO/NAFDAC specifications for the examined parameters, brands 1 and 6 were inferred to not comply with the recommended shelf life of 2 months (approximately 8 weeks). Hence, there is a need for strict compliance to NAFDAC-specified Good Manufacturing Practice by these processing factories to prevent probable adverse health effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号