首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Dampier Archipelago of Western Australia's Pilbara Region, several locally endemic, morphologically distinctive species of Rhagada land snails occur, contrasting with the morphologically conservative species with wider distributions on the adjacent mainland. To test alternative origins of this unusual local diversity in a continental archipelago, we examined sequences of the cytochrome oxidase subunit 1 and 16S mitochondrial genes in 22 described species and eight undescribed forms, including all known morphospecies from the Pilbara Region's Dampier Archipelago and adjacent mainland. Phylogenetic analyses consistently resolved four, deep clades within the Pilbara Region, with a mean sequence divergence of 15–18%. All but one of the species from the Dampier Archipelago formed one of the major clades, indicating that the morphological radiation in the archipelago evolved locally, rather than through multiple, relictual mainland lineages. Morphological divergence spanning almost that of the entire genus was within a subclade with sequence divergence < 4%, highlighting the disconnection between morphological diversification and levels of molecular genetic divergence. This in situ morphological radiation in the Dampier Archipelago, which transcends variation seen over much larger distances on the mainland, is unusual for a continental archipelago, and may relate to local heterogeneity of land forms. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 316–327.  相似文献   

2.
The influence of Pleistocene climatic oscillations on shaping the genetic structure of Asian biota is poorly known. The Japanese pipistrelle bat occurs over a wide range in eastern Asia, from Siberia to Japan. To test the relative impact of ancient and more recent events on genetic structure in this species, we combined mitochondrial (cytochrome b) and microsatellite markers to reconstruct its phylogeographic and demographic history on continental China and its offshore islands, Hainan Island and the Zhoushan Archipelago. Our mitochondrial DNA tree recovered two divergent geographical clades, indicating multiple glacial refugia in the region. The first clade was mainly confined to Hainan Island, indicating that gene flow between this population and the continent has been restricted, despite being repeatedly connected to the mainland during repeated glacial episodes. By contrast, haplotypes sampled on the Zhoushan Archipelago were mixed with those from the mainland, suggesting a recent shared history of expansion. Although microsatellite allele frequencies showed clear discontinuities across the sampling range, supporting the current isolation of both Hainan Island and the Zhoushan Archipelago, we also found clear evidence of more recent back colonization, probably via post‐glacial expansion or, in the latter case, occasional long distance dispersal. The results obtained highlight the importance of using multiple sets of markers for teasing apart the roles of ancient and more recent events on population genetic structure. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 582–594.  相似文献   

3.
Differing selective pressures on islands versus the mainland may produce alternative evolutionary outcomes among closely related lineages. Conversely, lineages may be constrained to produce similar outcomes in different mainland and island environments, or mainland and island environments may not differ significantly. Among the best‐studied island radiations are Caribbean Anolis lizards. Distinct morphotypes, or ‘ecomorphs’, have been described, and the same ecomorphs have evolved independently on each Greater Antillean island. The mainland Anolis radiation has received much less attention. We use a large morphological data set and a novel phylogenetic hypothesis to show that mainland Anolis did not evolve the same morphotypes as island Anolis, despite some island species being more closely related to mainland species than to island species that share their morphotype. A maximum of four of the six Caribbean ecomorphs were found to exist on the mainland, and just 15 of 123 mainland species are assignable to a Caribbean ecomorph. This result was insensitive to differing taxon samples and alternative phylogenetic hypotheses. Mainland convergence to a Caribbean ecomorph occurs only among species assigned to the grass‐bush ecomorph. Thus, the ecomorphs that have evolved convergently multiple times in the Caribbean have not evolved in parallel on the mainland. These results are consistent with the hypothesis that mainland and island environments offer different selective pressures. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 852–859.  相似文献   

4.
Phylogenetic analysis of the genus Euscorpius (Scorpiones: Euscorpiidae) across the Mediterranean region (86 specimens, 77 localities, four DNA markers: 16S rDNA, COI, COII, and ITS1), focusing on Greek fauna, revealed high variation, deep clade divergences, many cryptic lineages, paraphyly at subgenus level, and sympatry of several new and formerly known lineages. Numerous specimens from mainland and insular Greece, undoubtedly the least studied region of the genus' distribution, have been included. The reconstructed phylogeny covers representative taxa and populations across the entire genus of Euscorpius. The deepest clades detected within Euscorpius correspond (partially) to its current subgeneric division, outlining subgenera Tetratrichobothrius and Alpiscorpius. The rest of the genus falls into several clades, including subgenus Polytrichobothrius and a paraphyletic subgenus Euscorpius s.s. Several cryptic lineages are recovered, especially on the islands. The inadequacy of the morphological characters used in the taxonomy of the genus to delineate species is discussed. Finally, the time frame of differentiation of Euscorpius in the study region is estimated and the distributional patterns of the lineages are contrasted with those of other highly diversified invertebrate genera occurring in the study region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 728–748.  相似文献   

5.
The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over‐water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 288–322.  相似文献   

6.
The Persian racerunner Eremias persica Blanford, 1875 is confined to the Iranian plateau, and forms one of the most widespread but rarely studied species of the family Lacertidae. With many local populations inhabiting a variety of habitats, and exhibiting considerable morphological, genetic, and ecological variations, it represents a species complex. We analysed sequences of mitochondrial cytochrome b and 12S ribosomal RNA (rRNA) genes derived from 13 geographically distant populations belonging to the E. persica complex. Using our knowledge of palaeogeographical events, a molecular clock was calibrated to assess the major events in fragmentation, radiation, and intraspecific variation. The sequence data strongly support a basal separation of the highland populations of western Iran from those of the open steppes and deserts, occurring in the east. The subsequent radiation, fragmentation, and evolution of these major assemblages have led to several discernable geographical lineages across the wide area of the Iranian plateau. The results indicate a middle‐Miocene origin for the clade as a whole. The first split, isolating the western and eastern clades, appears to have occurred 11–10 Mya. Further fragmentations and divergence within the major clades began about 8 Mya, with an evolutionary rate of 1.6% sequence divergence per million years among the lineages in the genes studied (combined data set). Molecular and morphological data strongly support a taxonomic revision of this species complex. At least four of the discovered clades should be raised to species, and two to subspecies, rank. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 641–660.  相似文献   

7.
Although islands are of long‐standing interest to biologists, only a handful of studies have investigated the role of climatic history in shaping evolutionary diversification in high‐latitude archipelagos. In this study of the Alexander Archipelago (AA) of Southeast Alaska, we address the impact of glacial cycles on geographic genetic structure for three mammals co‐distributed along the North Pacific Coast. We examined variation in mitochondrial and nuclear loci for long‐tailed voles (Microtus longicaudus), northwestern deermice (Peromyscus keeni), and dusky shrews (Sorex monticola), and then tested hypotheses derived from Species Distribution Models, reconstructions of paleoshorelines, and island area and isolation. In all three species, we identified paleoendemic clades that likely originated in coastal refugia, a finding consistent with other paleoendemic lineages identified in the region such as ermine. Although there is spatial concordance at the regional level for endemism, finer scale spatial and temporal patterns are less clearly defined. Demographic expansion across the region for these distinctive clades is also evident and highlights the dynamic history of Late Quaternary contraction and expansion that characterizes high‐latitude species.  相似文献   

8.
By complementing two independent systematic studies published recently on the Western Australian land snail Amplirhagada, we compare levels of morphological variation in shells and genitalia with those in the mitochondrial markers cytochrome c oxidase (COI) and 16S to evaluate the utility of mtDNA markers for delimiting species. We found that penial morphology and mitochondrial divergence are generally highly consistent in delimiting species, while shells have little overall taxonomic utility in these snails. In addition to this qualitative correspondence, there is almost no overlap between intraspecific and interspecific genetic distances in COI, with the highest intraspecific and lowest interspecific distance being 6%. This value is twice the general level suggested as a DNA barcode threshold by some authors and higher than the best average found in stylommatophoran land snails. Although in Amplirhagada land snails DNA barcoding may provide meaningful information as a first‐pass approach towards species delimitation, we argue that this is due only to specific evolutionary circumstances that facilitated a long‐termed separate evolution of mitochondrial lineages along spatial patterns. However, because in general the amounts of morphological and mitochondrial differentiation of species depend on their evolutionary history and age, the mode of speciation, distributional patterns and ecological adaptations, and absence or presence of mechanisms that prevent gene flow across species limits, the applicability of DNA barcoding has to be confirmed by morphological studies for each single group anew. Based on evidence from both molecular and morphological markers, we describe six new species from the Bonaparte Archipelago and revise the taxonomy of a further two. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 337–362.  相似文献   

9.
The Chilotan Archipelago and surrounding areas of north‐western Patagonia (41°–43°S, 72°–74°W) offer a unique opportunity to study the interplay between the recent genetic and paleoenvironmental evolution on temperate rainforest environments. Previous studies in this region have postulated that land biota persisted west of the Patagonian ice sheet, in ice‐free low‐elevation regions of the mainland, and the north‐western portion of Isla Grande de Chiloé during Quaternary ice ages. In this study, we analysed the phylogeographical structure (Cytochrome b) of the iguanid lizard Liolaemus pictus to estimate their genetic structure in response to glacial–interglacial cycles and colonization routes. We found that populations from the mainland and Isla Grande de Chiloé do not share haplotypes and, thus, are divergent haplogroups. This divergence might reflect an ancient isolation, much older than the last glaciation. Moreover, the existence of four divergent haplogroups among L. pictus populations in the mainland suggests the persistence of multiple isolated populations during the last glaciation. Our results also indicate that the colonization of small islands occurred from several source sites, located both in the mainland and in Isla Grande de Chiloé, after the Last Glacial Maximum.  相似文献   

10.
Using a large database on the spatial distribution of European springtails (Collembola) we investigated how range sizes and range distribution across European countries and major islands vary. Irrespective of ecological guild, islands tended to contain more endemic species than mainland countries. Nestedness and species co‐occurrence analysis based on country species lists revealed latitudinal and longitudinal gradients of species occurrences across Europe. Species range sizes were much more coherent and had fewer isolated occurrences than expected from a null model based on random colonization. We did not detect clear postglacial colonization trajectories that shaped the faunal composition across Europe. Our results are consistent with a multiregional postglacial colonization. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 498–506.  相似文献   

11.
12.
On Rosemary Island, a small continental island (11 km2) in the Dampier Archipelago, Western Australia, snails of the genus Rhagada have extremely diverse morphologies. Their shells vary remarkably in size and shape, with the latter ranging from globose to keeled‐flat, spanning the range of variation in the entire genus. Based primarily on variation in shell morphology, five distinct species are currently recognized. However, a study of 103 populations has revealed continuity of shell form within a very closely‐related group. A phylogenetic analysis of specimens from Rosemary Island, and other islands in the Dampier Archipelago, indicates that much of the morphological variation has evolved on the island, from within a monophyletic group. Within the island, snails with distinct shell morphologies could not be distinguished based on variation in mitochondrial DNA or their reproductive anatomy. The shell variation is geographically structured over a very fine scale, with clines linking the extreme forms over distances less than 200 m. Although there is no evidence that the different forms have evolved in isolation or as a consequence of drift, there is a strong association between keeled‐flat shells and rocky habitats, suggesting that shell shape may be of adaptive significance. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 756–769.  相似文献   

13.
The endemic, monotypic freshwater crab species Seychellum alluaudi was used as a template to examine the initial colonisation and evolutionary history among the major islands in the Seychelles Archipelago. Five of the “inner” islands in the Seychelles Archipelago including Mahé, Praslin, Silhouette, La Digue and Frégate were sampled. Two partial mtDNA fragments, 16S rRNA and cytochrome oxidase subunit I (COI) was sequenced for 83 specimens of S. alluaudi. Evolutionary relationships between populations were inferred from the combined mtDNA dataset using maximum parsimony, maximum likelihood and Bayesian inferences. Analyses of molecular variance (AMOVA) were used to examine genetic variation among and within clades. A haplotype network was constructed using TCS while BEAST was employed to date the colonisation and divergence of lineages on the islands. Phylogenetic analyses of the combined mtDNA data set of 1103 base pairs retrieved a monophyletic S. alluaudi group comprised three statistically well-supported monophyletic clades. Clade one was exclusive to Silhouette; clade two included samples from Praslin sister to La Digue, while clade three comprised samples from Mahé sister to Frégate. The haplotype network corresponded to the three clades. Within Mahé, substantial phylogeographic substructure was evident. AMOVA results revealed limited genetic variation within localities with most variation occurring among localities. Divergence time estimations predated the Holocene sea level regressions and indicated a Pliocene/Pleistocene divergence between the three clades evident within S. alluaudi. The monophyly of each clade suggests that transoceanic dispersal is rare. The absence of shared haplotypes between the three clades, coupled with marked sequence divergence values suggests the presence of three allospecies within S. alluaudi.  相似文献   

14.
The Mediterranean islands of Sardinia and Corsica are known for their multitude of endemics. Butterflies in particular have received much attention. However, no comprehensive studies aiming to compare populations of butterflies from Sardinia and Corsica with those from the neighbouring mainland and Sicily have been carried out. In the present study, the eleven Satyrinae species inhabiting Sardinia and Corsica islands were examined and compared with continental and Sicilian populations by means of geometric morphometrics of male genitalia. Relative warp computation, discriminant analyses, hierarchical clustering, and cross‐validation tests were used to identify coherent distributional patterns including both islands and mainland populations. The eleven species showed multifaceted distributional patterns, although three main conclusions can be drawn: (1) populations from North Africa and Spain are generally different from those belonging to the Italian Peninsula; (2) populations from Sardinia and Sicily often resemble the North Africa/Spain ones; Corsica shows transitional populations similar to those from France; and (3) sea barriers represent filters to dispersal, although their efficacy appears to be unrelated to their extension. Indeed, the short sea straits between Sardinia and Corsica and between Sicily and the Italian Peninsula revealed a strong effectiveness with respect to preventing faunal exchanges; populations giving onto sea channels between Corsica and Northern Italy and between Sicily and Tunisia showed a higher similarity. A comparison of island and mainland distributions of the eleven taxa have helped to unravel the complex co‐occurrence of historical factors, refugial dynamics, and recent (post‐glacial) dispersal with respect to shaping the populations of Mediterranean island butterflies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 195–212.  相似文献   

15.
The present study article examines the shapes of centipede species–area relationships (SARs) in the Mediterranean islands, compares the results of the linear form of the power model between archipelagos, discusses biological significance of the power model parameters with other taxa on the Aegean archipelago, and tests for a significant small‐island effect (SIE). We used 11 models to test the SARs and we compared the quality‐of‐fit of all candidate models. The power function ranked first and Z‐values was in the range 0.106–0.334. We assessed the presence of SIEs by fitting both a continuous and discontinuous breakpoint regression model. The continuous breakpoint regression functions never performed much better than the closest discontinuous model as a predictor of centipede species richness. We suggest that the relatively low Z‐values in our data partly reflect better dispersal abilities in centipedes than in other soil invertebrate taxa. Longer periods of isolation and more recent island formation may explain the somewhat lower constant c in the western Mediterranean islands compared to the Aegean islands. Higher breakpoint values in the western Mediterranean may also be a result of larger distance to the mainland and longer separation times. Despite the differences in the geological history and the idiosyncratic features of the main island groups considered, the overall results are quite similar and this could be assigned to the ability of centipedes to disperse across isolation barriers. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 146–159.  相似文献   

16.
Aim Our aims were to verify the existence of phylogenetic disequilibrium between butterfly lineages at the subcontinental scale for islands and the nearest mainland and to test the capacity of islands for hosting ancestral populations of butterflies and the significance of such relict populations. Location The western Mediterranean continental area of Europe and North Africa together with several large and small islands (Balearics, Tuscan Archipelago, Aeolian Archipelago, Capri, Sardinia, Sicily, Corsica). Methods Using geometric morphometrics, the shape of male genitalia was analysed in two common butterflies (Pyronia cecilia and Pyronia tithonus), whose spatial heterogeneity in the Mediterranean region has recently been described. Observed patterns in genital shapes were compared with shapes predicted for islands and fossil islands to assess the contribution of historical and current events in accounting for the transition from a refugial model to an equilibrium model. Measurements were taken for 473 specimens in 90 insular and mainland sites. Results The shape of the genitalia of populations of most islands differed substantially from that predicted by the equilibrium hypothesis while closely fitting the refugial hypothesis. The comparison between different models strongly suggests that islands maintain ancestral lineages similar to those living in Spain (P. cecilia) and France (P. tithonus). A high correlation between observed and predicted patterns on islands and fossil islands occurs during the first steps of modelled introgressive hybridization while the following steps exposed a successively lower fit, suggesting that the process from a refugial to an equilibrium situation is highly skewed towards an earlier non‐equilibrium. Main conclusions The observed non‐equilibrium pattern supports the refugial hypothesis, suggesting that an ancestral lineage was originally distributed from Spain to Italy, and also occupied offshore islands. This lineage, replaced in Italy, has persisted on the islands owing to their isolation. A comparison of the distribution patterns for genetic and morphometric markers in several species indicates that the situation highlighted for Pyronia may represent a common biogeographic feature for many Mediterranean butterflies.  相似文献   

17.
We investigate how late Cenozoic orogenics and climatic change might have influenced the history of taxon diversification and current species ranges of an endemic, Afrotropical, insect genus. Diastellopalpus van Lansberge is a near basally‐derived taxon in the dung beetle tribe Onthophagini (Coleoptera: Scarabaeidae: Scarabaeinae) that has diversified into 32 known species primarily centred on intertropical forests. Basal dichotomies in both published and re‐analysed phylogenies divide the species into clades that are geographically centred either to the east or west of the south‐east highlands that underwent uplift from the Miocene. There is broad climatic overlap between many of the species but clear separation along a minimum spanning tree in ordinal space where they are divided into taxa with either lowland or highland centres of distribution. Observed spatial distributions of six defined species groups mostly differ from predicted climatic ranges, presumably as a result of historical constraints on species dispersal. A trend from dominance of montane or wet lowland forest associations in species lineages derived from more basal nodes (Groups A–C) to dominance of drier upland forest and moist woodland associations in species lineages derived from a more terminal node (Groups D–F) is perhaps linked to the stepped trend to cooler, dryer climate in the late Cenozoic. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 407–423.  相似文献   

18.
The deciphering of the process of genetic differentiation of species with insular distributions is relevant for biogeographical and conservation reasons. Despite their importance as old gondwanic islands and part of the western Indian Ocean biodiversity hotspot, little is known about the genetic structure of taxa from the Seychelles Islands. We have examined the patterns of structure and isolation within Urocotyledon inexpectata (Reptilia: Geckkonidae), an endemic species from this archipelago. Genetic diversity was screened from populations across the archipelago for both mitochondrial and nuclear genes. Gene genealogies and model‐based inference were used to explore patterns and timings of isolation between the main lineages. High levels of genetic diversity were found for the mitochondrial and some of the nuclear markers. This species harbours at least two highly differentiated lineages, exclusively distributed across the northern and southern groups of the islands. The main split between these was dated back to the Miocene–late Pliocene, but isolation events throughout the Pliocene and Pleistocene were also inferred. Migration between groups of islands was apparently nonexistent, except for one case. The low dispersal capabilities of this species, together with the intrinsic fragmented nature of its geographical distribution, seem to have resulted in highly structured populations, despite the cyclic periods of contact between the different island groups. These populations may currently represent more than one species, making U. inexpectata another example of a morphologically cryptic lineage with deep genetic divergence within gekkonids. The observed patterns suggest a hypothetical biogeographic scenario (of a main north–south phylogeographic break) for the Seychelles that can be further tested with the exploration of the phylogeographic structure of other Seychellois taxa. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 177–191.  相似文献   

19.
The gilgie (Cherax quinquecarinatus) is among the more widespread of the six endemic south‐western Australian freshwater crayfish species. In the present study, the phylogeographic structure of the gilgie was investigated across its distribution to determine whether patterns reflected those identified earlier in a co‐distributed congeneric, the koonac (Cherax preissii). Gilgies were sampled from 20 localities, a 412‐bp fragment of the cytochrome c oxidase subunit I mitochondrial DNA gene was amplified from 75 individuals, and allozyme variation was assayed at nine loci. As in the koonac, three geographically‐restricted lineages were identified: from the north‐western, southern coastal, and intermediate/south‐western regions. Phylogeographic breaks appeared to be congruent with those in the koonac. The extent of genetic differentiation among lineages was comparable to that in the koonac, suggesting temporal congruence of the historical events responsible for the observed structure. A relaxed Bayesian molecular clock suggested that the major clades and lineages in each species diverged in the Late Miocene–Early Pliocene (4.0–9.6 Myr ago), possibly resulting from increasing pulses of aridity. The retrieval of almost‐identical phylogeographic structure in two co‐distributed species suggests that biogeographic regions can be more accurately defined in south‐western Australia. With the geographic fidelity of these lineages, the present data also provide evidence of the translocation of a single individual from the north‐west to the south coast. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 385–402.  相似文献   

20.
Cladocerans and copepods are globally important freshwater zooplankton groups, differing in reproductive modes and dispersal abilities. We compared genetic variation of two common taxa of these crustaceans, the Daphnia longispina species complex (known to harbour multiple cryptic lineages) and Eucyclops serrulatus (morphologically and ecologically variable morphospecies), in lakes of ten Eastern European mountain ranges. We expected to discover cryptic lineages in both groups, and to observe different geographical patterns of diversity because of differences in life cycles. Within E. serrulatus, limited sampling through lowland habitats indeed showed the presence of eight highly divergent clades, probably cryptic species, but most of these were not found in the studied mountain lakes. Such a pattern was congruent with the diversity of the D. longispina complex. Regional coexistence of multiple clades within respective species complexes (two in Eucyclops and three in Daphnia) was observed only in the Tatra Mountains (on the Polish?Slovak border). In all other studied mountain ranges (in the Balkans), only single lineages of Daphnia and Eucyclops, respectively, were present, showing similar intraspecific patterns and no evidence for stronger dispersal limitation in Eucyclops than in Daphnia. Our results indicate that substantial cryptic variation may be expected in seemingly widespread copepod taxa. However, detection of cryptic lineages is not a general pattern in mountain lakes, although these habitats harbour substantial genetic diversity in crustacean zooplankton. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 754–767.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号