首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transfusion of autologous late‐outgrowth endothelial cells (OECs) is a promising treatment for restenosis after revascularization. Preparing cells by in vitro amplification is a key step to implement the therapy. This study aimed to demonstrate that bilobalide, a terpenoid, enhances the OEC amplification. Human‐, rabbit‐ and rat OECs and a mouse femoral artery injury model were used. Expanding OECs used endothelial growth medium‐2 as the standard culture medium while exploring the mechanisms used endothelial basal medium‐2. Proliferation assay used MTT method and BrdU method. Migration assay used the modified Boyden chamber. Intracellular nitric oxide, superoxide anion, hydroxyl radical/peroxynitrite and H2O2 were quantified with DAF‐FM DA, dihydroethidium, hydroxyphenyl fluorescein and a H2O2 assay kit, respectively. Activated ERK1/2 and eNOS were tested with the Western blot. Bilobalide concentration‐dependently enhanced OEC number increase in vitro. Transfusion of bilobalide‐based human OECs into femoral injured athymia nude mouse reduced the intimal hyperplasia. Bilobalide promoted OEC proliferation and migration and increased the intracellular nitric oxide level. L‐NAME, a NOS inhibitor, inhibits but not abolishes OEC proliferation, migration and ERK1/2 activation. Bilobalide concentration‐dependently enhanced the eNOS Ser‐1177 phosphorylation and Thr‐495 dephosphorylation in activated OECs. Bilobalide alleviates the increase in hydroxyl radical/peroxynitrite, superoxide anion and H2O2 in proliferating OECs. In conclusion, nitric oxide plays a partial role in OEC proliferation and migration; bilobalide increases OEC nitric oxide production and decreases nitric oxide depletion, promoting the OEC number increase; Bilobalide‐based OECs are active in vivo. The findings may simplify the preparation of OECs, facilitating the implementation of the autologous‐OECs‐transfusion therapy.  相似文献   

2.
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone‐mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose‐dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase‐2 (COX‐2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX‐1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX‐2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial‐dependent mediators through an up‐regulation in COX‐2‐PGIS‐PGI2 pathway which involves a COX‐2‐dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone‐mediated pathologies.  相似文献   

3.
4.
The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2)-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2, a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2ʹ,7ʹ-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2) could restore the NO production in CdCl2-treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2-induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2-mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.  相似文献   

5.
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2O2‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p16INK4a and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked H2O2‐induced superoxide formation, NADPH oxidase levels and VCAM‐1, ICAM‐1, IL‐6 and miR‐34a synthesis. Kallistatin reversed H2O2‐mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)‐2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti‐senescence and anti‐oxidant effects were attributed to SIRT1‐mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up‐regulated Let‐7g, whereas Let‐7g inhibitor abolished kallistatin's effects on miR‐34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium‐specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild‐type mouse endothelial cells, and H2O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let‐7g, SIRT1, eNOS, catalase and SOD‐1 mRNA levels, and elevated miR‐34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let‐7g‐mediated miR‐34a‐SIRT1‐eNOS pathway.  相似文献   

6.
In our search to improve the stability and cellular absorption of tea polyphenols, we synthesized 3‐O‐(3,4,5‐trimethoxybenzoyl)‐(?)‐epicatechin (TMECG), which showed high antiproliferative activity against melanoma. TMECG downregulates dihydrofolate reductase (DHFR) expression in melanoma cells and we detail the sequential mechanisms that result from this even. TMECG is specifically activated in melanoma cells to form a stable quinone methide (TMECG‐QM). TMECG‐QM has a dual action on these cells. First, it acts as a potent antifolate compound, disrupting folate metabolism and increasing intracellular oxidized folate coenzymes, such as dihydrofolate, which is a non‐competitive inhibitor of dihydropterine reductase, an enzyme essential for tetrahydrobiopterin (H4B) recycling. Such inhibition results in H4B deficiency, endothelial nitric oxide synthase (eNOS) uncoupling and superoxide production. Second, TMECG‐QM acts as an efficient superoxide scavenger and promotes intra‐cellular H2O2 accumulation. Here, we present evidence that TMECG markedly reduces melanoma H4B and NO bioavailability and that TMECG action is abolished by the eNOS inhibitor Nω‐nitro‐L ‐arginine methyl ester or the H2O2 scavenger catalase, which strongly suggests H2O2‐dependent DHFR downregulation. In addition, the data presented here indicate that the simultaneous targeting of important pathways for melanoma survival, such as the folate cycle, H4B recycling, and the eNOS reaction, could represent an attractive strategy for fighting this malignant skin pathology. J. Cell. Biochem. 110: 1399–1409, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver‐secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the β‐klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2O2)‐induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2O2. Administration of N(ω)‐nitro‐L‐arginine methyl ester (L‐NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)‐deficient mice that were fed a high‐fat diet (HFD). Endothelial function, as reflected by acetylcholine‐stimulated aortic relaxation, was improved after FGF21 treatment in ApoE‐deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE‐deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD‐induced vascular injury in ApoE‐deficient mice.  相似文献   

8.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

9.
10.
11.
Nitric oxide (NO) shows cytotoxicity, and its reaction products with reactive oxygen species, such as peroxynitrite, are potentially more toxic. To examine the role of O2 in the NO toxicity, we have examined the proliferation of cultured human umbilical vein endothelial cells in the presence or absence of NO donor, ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)-amino]diazen-1-ium-1,2-diolate) (DETA-NONOate) (100–500 μM), under normoxia (air), hypoxia (< 0.04% O2) or hyperoxia (88–94% O2). It was found that the dose dependency on NONOate was little affected by the ambient O2 concentration, showing no apparent synergism between the two treatments. We have also examined the effects of exogenous NO under normoxia and hyperoxia on the cellular activities of antioxidant enzymes involved in the H2O2 elimination, since many of them are known to be inhibited by NO or peroxynitrite in vitro. Under normoxia DETA-NONOate (500 μM) caused 25% decrease in catalase activity and 30% increases in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in 24 h. Under hyperoxia NO caused about 25% decreases in activities of catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. The H2O2 removal rate by NO-treated cells was computed on the mathematical model for the enzyme system. It was concluded that the cellular antioxidant function is little affected by NO under normoxia but that it is partially impaired when the cells are exposed to NO under hyperoxia.  相似文献   

12.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

13.
Ghrelin is thought to directly exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function. Our study demonstrates the ability of ghrelin to promote rat CMEC (cardiac microvascular endothelial cell) proliferation, migration and NO (nitric oxide) secretion. CMECs were isolated from left ventricle of adult male Sprague—Dawley rat by enzyme digestion and maintained in endothelial cell medium. Dil‐ac‐LDL (1,1′‐dioctadecyl‐3,3,3′,3′‐ tetramethylindocarbocyanine‐labelled acetylated low‐density lipoprotein) intake assays were used to identify CMECs. Cells were split into five groups and treated with varying concentrations of ghrelin as follows: one control non‐treated group; three ghrelin dosage groups (1×10?9, 1×10?8, 1×10?7 mol/l) and one ghrelin+PI3K inhibitor group (1×10?7 mol/l ghrelin+20 μmol/l LY294002). After 24 h treatment, cell proliferation capability was measured by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay and Western blot for PCNA (proliferating cell nuclear antigen) protein expression. Migration of CMECs was detected by transwell assays, and NO secretion of CMECs was measured via nitrate reduction. Protein expression of AKT and phosphorylated AKT in CMECs was measured by Western blot after exposure to various concentrations of ghrelin and the PI3K inhibitor LY294002. Our results indicate that ghrelin significantly enhanced cell growth at concentrations of 10?8 mol/l (0.271±0.041 compared with 0.199±0.021, P=0.03) and 10?7 mol/l (0.296±0.039 compared with 0.199±0.021, P<0.01). However, addition of the PI3K/AKT inhibitor LY294002 inhibited the ghrelin‐mediated enhancement in cell proliferation (0.227±0.042 compared with 0.199±0.021, P=0.15). At a concentration between 10?8 and 10?7 mol/l, ghrelin caused a significant increase in the number of migrated cells compared with the control group (126±9 compared with 98±7, P=0.02; 142±6 compared with 98±7, P<0.01), whereas no such change could be observed in the presence of 20 μmol/l of the PI3K/Akt inhibitor LY294002 (103±7 compared with 98±7, P=0.32). Ghrelin treatment significantly enhanced NO production in a dose‐dependent fashion compared with the untreated control group [(39.93±2.12) μmol/l compared with (30.27±2.71) μmol/l, P=0.02; (56.80±1.98) μmol/l compared with (30.27±2.71) μmol/l, P<0.01]. However, pretreatment with 20 μmol/l LY294002 inhibited the ghrelin‐stimulated increase in NO secretion [(28.97±1.64) μmol/l compared with (30.27±2.71) μmol/l, P=0.37]. In summary, we have found that ghrelin treatment promotes the proliferation, migration and NO secretion of CMECs through activation of PI3K/AKT signalling pathway.  相似文献   

14.
High glucose (HG)‐induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co‐transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG‐induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence‐associated beta‐galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT‐PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2‐NBD‐glucose. HG increased ECs senescence markers and oxidative stress, down‐regulated eNOS expression and NO formation, and induced the expression of VCAM‐1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX‐4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG‐induced ECs senescence and SGLT1 and 2 expression. Thus, HG‐induced ECs ageing is driven by the local angiotensin system via the redox‐sensitive up‐regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.  相似文献   

15.
《Free radical research》2013,47(2):109-118
Abstract

Nebivolol is a third generation beta blocker with endothelial nitric oxide synthase (eNOS) agonist properties. Considering the role of reactive oxygen species (ROS) in the uncoupling of eNOS, we hypothesized that the preadministration of an antioxidant as tempol, could improve the hypotensive response of nebivolol in normotensive animals increasing the nitric oxide (NO) bioavailability by a reduction of superoxide (O2??) basal level production in the vascular tissue.

Male Sprague Dawley rats were given tap water to drink (control group) or tempol (an antioxidant scavenger of superoxide) for 1 week. After 1 week, Nebivolol, at a dose of 3 mg/kg, was injected intravenously to the control group or to the tempol-treated group. Mean arterial pressure, heart rate, and blood pressure variability were evaluated in the control, tempol, nebivolol, and tempol nebivolol groups, as well as, the effect of different inhibitor as Nβ-nitro-l-arginine methyl ester (L-NAME, a Nitric oxide synthase blocker) or glybenclamide, a KATP channel inhibitor. Also, the expression of α,β soluble guanylate cyclase (sGC), phospho-eNOS, and phospho-vasodilator-stimulated phosphoprotein (P-VASP) were evaluated by Western Blot and cyclic guanosine monophosphate (cGMP) levels by an enzyme-linked immunosorbent assay (ELISA) commercial kit assay.

We showed that pretreatment with tempol in normotensive rats produces a hypotensive response after nebivolol administration through an increase in the NO bioavailability and sGC, improving the NO/cGMP/protein kinase G (PKG) pathway compared to that of the nebivolol group.

We demonstrated that tempol preadministration beneficiates the response of a third-generation beta blocker with eNOS stimulation properties, decreasing the basal uncoupling of eNOS, and improving NO bioavailability. Our results clearly open a possible new strategy therapeutic for treating hypertension.  相似文献   

16.
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS‐induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS‐mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2O2; 10–1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2O2 + HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose‐dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100–1,000 μM H2O2 caused more damage to MNCs as compared to treatment with lower concentrations (10–50 μM). Based on these results, we propose to administer high‐dose H2O2 + HA (100–1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.  相似文献   

17.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H2O2) toxicity and protect cells against H2O2 toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H2O2 toxicity in cultured liver endothelial cells over a wide range of NO and H2O2 concentrations. NO was generated by spermine NONOate (SpNO, 0.001–1 mM), H2O2 was generated continuously by glucose/glucose oxidase (GOD, 20–300 U/l), or added as a bolus (200 μM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H2O2-induced cell death. SpNO concentrations >0.1 mM were injurious with low H2O2 concentrations, but protective at high H2O2 concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H2O2 steady-state levels in line with inhibition of H2O2 degradation. Thus, the overall effect of NO on H2O2 toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H2O2 levels and enhancement being predominant with high NO and low H2O2 levels.  相似文献   

18.
Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs‐926) with NaHS (a H2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS protein expression in ECs. L‐cysteine, a precursor of H2S, stimulated NO production whereas blockage of the activity of H2S‐generating enzyme, cystathionine gamma‐lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3‐K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS‐specific siRNA or nitro‐L‐arginine methyl ester (L‐NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt‐dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H2S‐induced angiogenesis.  相似文献   

19.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

20.
Accumulating evidences point to a significant role for the chromogranin A (CgA)‐derived peptide vasostatin 1 (VS‐1) in the protective modulation of the cardiovascular activity, because of its ability to counteract the adrenergic signal. We have recently shown that VS‐1 induces a PI3K‐dependent‐nitric oxide (NO) release by endothelial cells, contributing to explain the mechanism of its cardio‐suppressive and vasodilator properties. However, the cellular processes upstream the eNOS activation exerted by this peptide are still unknown, as typical high‐affinity receptors have not been identified. Here we hypothesize that in endothelial cells VS‐1 acts, on the basis of its cationic and amphipathic properties, as a cell penetrating peptide, binding to heparan sulfate proteoglycans (HSPGs) and activating eNOS phosphorylation (Ser1179) through a PI3K‐dependent, endocytosis‐coupled mechanism. In bovine aortic endothelial cells (BAE‐1 cells) endocytotic vesicles trafficking was quantified by confocal microscopy with a water‐soluble membrane dye; caveolin 1 (Cav1) shift from plasma membrane was studied by immunofluorescence staining; VS‐1‐dependent eNOS phosphorylation was assessed by immunofluorescence and immunoblot analysis. Our experiments demonstrate that VS‐1 induces a marked increase in the caveolae‐dependent endocytosis, (115 ± 23% endocytotic spots/cell/field in VS‐1‐treated cells with respect to control cells), that is significantly reduced by both heparinase III (HEP, 17 ± 15% above control) and Wortmannin (Wm, 7 ± 22% above control). Heparinase, Wortmannin, and methyl‐β‐cyclodextrin (MβCD) abolish the VS‐1‐dependent eNOS phosphorylation (PSer1179eNOS). These results suggest a novel signal transduction pathway for endogenous cationic and amphipathic peptides in endothelial cells: HSPGs interaction and caveolae endocytosis, coupled with a PI3K‐dependent eNOS phosphorylation. J. Cell. Biochem. 110: 70–79, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号