首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal phytopathogen Ustilago maydis alternates between budding and filamentous growth during its life cycle. This dimorphic transition, which is influenced by environmental factors and mating, is regulated in part by cAMP-dependent protein kinase (PKA). We have recently identified a related protein kinase, encoded by the ukc1 gene, that also plays a role in determining cell shape. The ukc1 gene is homologous to several other protein kinase-encoding genes including the cot-1 gene of Neurospora crassa, the TB3 gene of Colletotrichum trifolii, the orb6 gene of Schizosaccharomyces pombe, the warts tumor suppressor gene of Drosophila melanogaster and the myotonic dystrophy kinase gene in humans. Disruption of the ukc1 gene in U. maydis resulted in cells that were highly distorted in their morphology, incapable of generating aerial filaments during mating in culture and defective in their ability to cause disease on corn seedlings. In addition, the cells of ukc1 mutants became highly pigmented and resembled the chlamydospore-like cells that have been described for U. maydis. Overall, these results demonstrate an important role for the ukc1-encoded protein kinase in the morphogenesis, pathogenesis and pigmentation of U. maydis. Received: 6 May 1998 / Accepted: 19 November 1998  相似文献   

2.
玉米黑粉菌(Ustilago maydis)可在其宿主植物玉米(Zea mays L.)地上部的所有器官诱导肿瘤发生。玉米黑粉菌成功定殖宿主并诱导形成肿瘤取决于与宿主植物多方位、多层次的相互作用以及该过程中发生的复杂的细胞和分子事件。本文综述了玉米黑粉菌与玉米互作研究的最新进展,介绍了玉米黑粉菌通过分泌效应子入侵、定殖玉米植株以及植株在分子水平上对入侵的响应;阐述了活体营养建立过程中,玉米黑粉菌与玉米通过效应子、激素、糖代谢酶和转运蛋白的差异调节,协调受感染宿主组织重新编程发育成膨大的植物肿瘤的关键因素,并对今后的研究方向进行了展望。  相似文献   

3.
4.
Ustilago maydis, a pathogen of maize, is a useful model for the analysis of mating, pathogenicity, and the morphological transition between budding and filamentous growth in fungi. As in other fungi, these processes are regulated by conserved signaling mechanisms, including the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and at least one mitogen-activated protein kinase (MAP kinase) pathway. A current challenge is to identify additional factors that lie downstream of the cAMP pathway and that influence morphogenesis in U. maydis. In this study, we identified suppressor mutations that restored budding growth to a constitutively filamentous mutant with a defect in the gene encoding a catalytic subunit of PKA. Complementation of one suppressor mutation unexpectedly identified the ras2 gene, which is predicted to encode a member of the well-conserved ras family of small GTP-binding proteins. Deletion of the ras2 gene in haploid cells altered cell morphology, eliminated pathogenicity on maize seedlings, and revealed a role in the production of aerial hyphae during mating. We also used an activated ras2 allele to demonstrate that Ras2 promotes pseudohyphal growth via a MAP kinase cascade involving the MAP kinase kinase Fuz7 and the MAP kinase Ubc3. Overall, our results reveal an additional level of crosstalk between the cAMP signaling pathway and a MAP kinase pathway influenced by Ras2.  相似文献   

5.
6.
H A Hartmann  R Kahmann    M Blker 《The EMBO journal》1996,15(7):1632-1641
In Ustilago maydis, the a and b mating type loci regulate cell fusion, filamentous growth and pathogenicity. The a locus encodes a pheromone-based cell recognition system, and the b locus specifies two homeodomain proteins. The expression of all genes in the a and b loci is induced by pheromone. We have identified a HMG protein (Prf1) that binds sequence specifically to pheromone response elements present in the a and b loci. prf1 mutants do not express the a and b genes and are sterile. The disruption of prf1 in pathogenic haploid strains results in a loss of pathogenicity. The constitutive expression of the b genes restores pathogenicity and induces filamentous growth in the absence of the pheromone signal. These results provide evidence that pheromone signalling, filamentous growth and pathogenic development are linked through Prf1.  相似文献   

7.
The increasing evidence linking regulation of polar growth and pathogenicity in fungi has elicited a significant effort devoted to produce a better understanding of mechanisms determining polarization in pathogenic fungi. Here we characterize in the phytopathogenic basidiomycete Ustilago maydis, the Spa2 protein, a well-known component of polarisome, firstly described in Saccharomyces cerevisiae. U. maydis display a dimorphic switch between budding growth of hapoid cells and filamentous growth of the dikaryon. During yeast growth, a GFP-tagged Spa2 protein localized to distinct growth sites in a cell cycle-specific manner, while during hyphal growth is persistently located to hyphal tips. Deletion of spa2 gene produces rounder budding cells and thicker filaments than wild-type cells, suggesting a role of Spa2 for the determination of the growth area in U. maydis. We also address the connections between Spa2 and the actin- and microtubule-cytoskeleton. We found that the absence of Spa2 does not affect cytoskeleton organization and strikingly, interference with actin filament or microtubule formation does not affect the polar localization of Spa2. In contrast, defects in the small GTPase Rac1 seems to affect the ability of Spa2 to locate to precise sites at the tip cell. Finally, to our surprise, we found that cells defectives in Spa2 function were as pathogenic as wild-type cells.  相似文献   

8.
In the corn smut pathogen, Ustilago maydis, meiosis and teliospore germination are temporally linked. We review teliospore dormancy and germination in U. maydis and present an overview of meiosis in basidiomycetes. The relevant available expressed sequence tag data is discussed, the databases used in reciprocal best hit blastp analysis are presented and potential U. maydis meiosis genes are identified. The implications of identifying these genes are discussed and hypotheses are presented regarding the control of meiosis in U. maydis.  相似文献   

9.
Cloning and disruption of Ustilago maydis genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have demonstrated that genes from Ustilago maydis can be cloned by direct complementation of mutants through the use of genomic libraries made in a high-frequency transformation vector. We isolated a gene involved in amino acid biosynthesis as an illustrative example and showed that integrative and one-step disruption methods can be used to create null mutations in the chromosomal copy of the gene by homologous recombination. The results of this investigation make it clear that one-step gene disruption will be of general utility in investigations of U. maydis, since simple, precise replacement of the sequence under study was readily achieved.  相似文献   

10.
We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.  相似文献   

11.
Morphogenesis and pathogenesis are closely associated aspects of the life cycle of the fungal pathogen Ustilago maydis. In this fungus, the dimorphic switch from budding to filamentous growth coincides with the transition from non-pathogenic to pathogenic growth on maize. We have cloned and characterized the ukb1 gene that encodes a putative serine/threonine protein kinase with a role in budding and filamentous growth. Mutants defective in ukb1 were altered in bud site selection and produced lateral buds at a greater frequency than wild-type cells. Dikaryotic cells defective in ukb1 were capable of colonizing host tissue and growing with a filamentous morphology in planta. However, the mutants were incapable of inducing tumor formation and they failed to complete sexual development. In addition, the ukb1 gene influenced the ability of colonies to form aerial mycelia in response to environmental stimuli. Overall, the discovery of ukb1 reinforces the connection between morphogenesis and pathogenesis in U. maydis.  相似文献   

12.
The phytopathogenic basidiomycete Ustilago maydis displays a dimorphic switch between budding growth of haploid cells and filamentous growth of the dikaryon. In a screen for mutants affected in morphogenesis and cytokinesis, we identified the serine/threonine protein kinase Cla4, a member of the family of p21-activated kinases (PAKs). Cells, in which cla4 has been deleted, are viable but they are unable to bud properly. Instead, cla4 mutant cells grow as branched septate hyphae and divide by contraction and fission at septal cross walls. Delocalized deposition of chitinous cell wall material along the cell surface is observed in cla4 mutant cells. Deletion of the Cdc42/Rac1 interaction domain (CRIB) results in a constitutive active Cla4 kinase, whose expression is lethal for the cell. cla4 mutant cells are unable to induce pathogenic development in plants and to display filamentous growth in a mating reaction, although they are still able to secrete pheromone and to undergo cell fusion with wild-type cells. We propose that Cla4 is involved in the regulation of cell polarity during budding and filamentation.  相似文献   

13.
Chew E  Aweiss Y  Lu CY  Banuett F 《Mycologia》2008,100(1):31-46
Abstract: Ustilago maydis is a Basidiomycete fungus that exhibits a yeast-like nonpathogenic form and a dikaryotic filamentous pathogenic form. Generation of these two forms is controlled by two mating type loci, a and b. The fungus undergoes additional morphological transitions in the plant that result in formation of a third cell type, the teliospore. The fuz1 gene is necessary for this developmental program. Here we report cloning and sequencing of fuz1 and show that it contains an open reading frame with coding capacity for a protein of 1421 amino acids. The Fuz1 protein belongs to the family of MYND Zn finger domain proteins. We generate a null mutation in strains of opposite mating type and show that fuz1 is necessary for conjugation tube formation, a morphological transition that occurs in response to pheromones. We generate fuz1- diploid strains heterozygous at a and b and show that fuz1 is also necessary for postfusion events (maintenance of filamentous growth). We also demonstrate that fuz1 is necessary for cell morphogenesis of the yeast-like cell: normal cell length, location and number of septa, cell separation and constriction of the neck region. Fuz1 is also required for cell wall integrity and to prevent secretion of a dark pigment. We propose that the MYND domain may interact with different proteins to regulate cell morphogenesis.  相似文献   

14.
The kinetic parameters of the 10 glycolytic enzymes and glycolytic fluxes were determined for the first time in Ustilago maydis. Enzyme activities in yeast grown in minimal medium and harvested in the stationary stage were twofold higher than those from yeast grown in rich medium. In contrast, in yeast harvested in the exponential stage, the enzyme activities were higher in cells grown in rich medium. Phosphofructokinase activity was the lowest in the four culture conditions analyzed, suggesting that this enzyme is a flux-controlling step in U. maydis glycolysis. The V(max) and K(m) values of hexokinase and pyruvate kinase were similar under all conditions. The results revealed that U. maydis aldolase belongs to the class II type of metalo-aldolases. 3-Phosphoglycerate mutase (PGAM) activity was 2,3-bisphosphoglycerate cofactor independent, which contrasted with the cofactor dependency predicted by the amino acid sequence alignment analysis. Pyruvate was secreted by U. maydis yeast in the presence and absence of external glucose. The glycolytic enzyme activities in the U. maydis mycelial form were similar to those found in yeast, except for one order of magnitude higher phosphofructokinase and PGAM activities, thus suggesting differences in the glycolysis regulatory mechanisms between the two cellular forms.  相似文献   

15.
The mitogen-activated protein kinase (MAPK) pathways are conserved from fungi to humans and have been shown to play important roles in mating and filamentous growth for both Saccharomyces cerevisiae and dimorphic fungi and in infectivity for pathogenic fungi. STE20 encodes a protein kinase of the p21-activated protein kinase family that regulates more than one of these cascades in yeasts. We hypothesized that an Ste20p homologue would play a similar role in the dimorphic plant pathogen Ustilago maydis. The full-length copy of the U. maydis gene was obtained from a genomic library; it lacked introns and was predicted to encode a protein of 826 amino acids, whose sequence confirmed its identity as the first Ste20p homologue to be isolated from a plant pathogen. The predicted protein contained both an N-terminal regulatory Cdc42-Rac interactive binding domain and a C-terminal catalytic kinase domain. Disruption of the gene smu1 resulted in a delayed mating response in a mating-type-specific manner and also in a severe reduction in disease production on maize. Unlike the Ustilago bypass of cyclase (ubc) mutations previously identified in genes in the pheromone-responsive MAPK cascade, mutation of smu1 does not by itself act as an extragenic suppressor of the filamentous phenotype of a uac1 mutant. Thus, the direct connection of Smu1p to MAPK cascade function has yet to be established. Even so, Smu1, though not absolutely required for mating, is necessary for wild-type mating and pathogenicity.  相似文献   

16.
《Fungal biology》2021,125(10):764-775
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.  相似文献   

17.
The Ustilago maydis virally encoded KP1 killer toxin   总被引:2,自引:1,他引:1  
Some strains of the plant-pathogenic fungus Ustilago maydis secrete toxins (killer toxins) that are lethal to susceptible strains of the same fungus. There are three well-characterized killer toxins in U. maydis–KP1, KP4, and KP6–which are secreted by the P1, P4, and P6 subtypes, respectively. These killer toxins are small polypeptides encoded by segments of an endogenous, persistent double-stranded RNA (dsRNA) virus in each U. maydis subtype. In P4 and P6, the M2 dsRNA segment encodes the toxin. In this work, the KP1 killer toxin was purified for internal amino acid sequence analysis, and P1M2 was identified as the KP1 toxin-encoding segment by sequence analysis of cDNA clones. The KP1 toxin is a monomer with a predicted molecular weight of 13.4kDa and does not have extensive sequence similarity with other viral anti-fungal toxins. The P1M2 segment is different from the P4 and P6 toxin-encoding dsRNA segments in that the 3’non-coding region of its plus strand has no sequence homology to the 3’ends of the plus strands of P1M1, P4M2, or P6M2.  相似文献   

18.
19.
玉米瘤黑粉菌的遗传交配型   总被引:2,自引:0,他引:2  
玉米瘤黑粉病是玉米的一种重要病害,普遍分布于世界各玉米产区,我国各地也有不同程度的发生,主要症状是在玉米的茎、叶、雄花、雌穗等部位形成肿瘤[1]。其病原菌为玉米瘤黑粉菌(Ustilalgo maydis),属于担子菌亚门,异宗配合。在玉米瘤黑粉菌的生活史中,有两种不同形态的细胞,即单倍体细胞(担孢子)和双核菌丝体。单倍体细胞没有致病性,在特定培养基上芽殖产生“酵母”状菌落。不同遗传型的单倍体细胞融合形成双核菌丝,双核菌丝能在寄主植物体内迅速发育,刺激寄主组织形成肿瘤,并继而经过细胞核融合,产生双…  相似文献   

20.
The Ustilago maydis mrb1 gene specifies a mitochondrial matrix protein with significant similarity to mitochondrial p32 family proteins known from human and many other eukaryotic species. Compatible mrb1 mutant strains were able to mate and form dikaryotic hyphae; however, proliferation within infected tissue and the ability to induce tumor development of infected maize (Zea mays) plants were drastically impaired. Surprisingly, manifestation of the mrb1 mutant phenotype selectively depended on the a2 mating type locus. The a2 locus contains, in addition to pheromone signaling components, the genes lga2 and rga2 of unknown function. Deletion of lga2 in an a2Deltamrb1 strain fully restored pathogenicity, whereas pathogenicity was partially regained in an a2Deltamrb1Deltarga2 strain, implicating a concerted action between Lga2 and Rga2 in compromising pathogenicity in Deltamrb1 strains. Lga2 and Rga2 localized to mitochondria and Mrb1 interacted with Rga2 in the yeast two-hybrid system. Conditional expression of lga2 in haploid cells reduced vegetative growth, conferred mitochondrial fragmentation and mitochondrial DNA degradation, and interfered with respiratory activity. The consequences of lga2 overexpression depended on the expression strength and were greatly exacerbated in Deltamrb1 mutants. We propose that Lga2 interferes with mitochondrial fusion and that Mrb1 controls this activity, emphasizing a critical link between mitochondrial morphology and pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号