首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To see whether a fat‐rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. Research Methods and Procedures: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low‐fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high‐fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by in direct calorimetry. Results: Fat oxidation was not significantly different after the two meals [LF, 31 ± 9 vs. HF, 35 ± 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 ± 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 ± 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 ± 12 vs. 29 ± 9 g/10.5 hours, p < 0, 05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 ± 0.7 vs. 1.5 ± 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. Discussion: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short‐term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.  相似文献   

2.
Data are limited concerning the dietary factors that influence appetite control in older adults. This study examined the effects of food form and portion size on appetite in 43 older adults (age: 72 ± 1 years; BMI: 25.6 ± 0.3 kg/m2). Subjects were assigned to groups based on portion size of the test meal (12.5% (n = 18) vs. 25% (n = 25) of estimated energy need). Subjects randomly consumed, on two separate days, the respective solid or beverage test meal. Appetite sensations and hormonal responses were measured over 4 h. Main effects of food form (P < 0.05) and/or portion size (P < 0.05) were observed for each appetite sensation. Postprandial hunger and desire to eat were greater following beverage vs. solid meal (between 12.5% vs. 25%), whereas fullness was lower after beverage vs. solid meal (P < 0.05). Main effects of food form and/or portion size were observed for glucose, insulin, and ghrelin. Postprandial glucose and insulin concentrations were lower after beverage vs. solid meal (between 12.5% vs. 25%; all comparisons, P < 0.05) whereas beverage meal led to greater 4‐h ghrelin vs. solid meal (P = 0.09). No main effects were observed for glucagon‐like peptide‐1 (GLP‐1) or cholecystokinin (CCK). When adjusting for age, food form remained significant for postprandial hunger and fullness; portion size remained significant for postprandial glucose. Greater hunger and reduced satiety with accompanying glucose, insulin, and ghrelin following the beverage vs. solid meals, and to some extent, in smaller vs. larger portions suggest that appetite control is influenced by food form and portion size in older adults. These findings may enhance the development of appropriate dietary strategies that help to regulate energy balance.  相似文献   

3.
Objective: This study evaluated the effects of acute and chronic consumption of higher dietary protein on energy expenditure, macronutrient use, appetite, and appetite‐regulating hormones during weight loss in women. Research Methods and Procedures: Thirty‐eight women chronically consuming a 750 kcal/d energy‐deficit diet with a protein content of 30% (higher protein‐chronic diet, HP‐CD, n = 21) or 18% (normal protein‐chronic diet, NP‐CD, n = 17) for 9 weeks were tested. On separate days, metabolic, appetite, and hormonal responses were measured over 4 hours when the women consumed a higher protein‐acute meal (HP‐AM) (30% of energy as protein) or a normal protein‐acute meal (NP‐AM) (18% of energy as protein). Results: With chronic diet groups combined, HP‐AM led to lower respiratory exchange ratio (0.829 ± 0.005 vs. 0.843 ± 0.008; p < 0.05), lower carbohydrate oxidation (p < 0.05), and higher fat oxidation (p < 0.05) compared with NP‐AM. HP‐AM also led to reduced self‐reported postprandial hunger (p < 0.001) and desire to eat (p < 0.001) and lower postprandial ghrelin (252 ± 16 vs. 274 ± 18 ng/mL · 240 minutes, p < 0.05) compared with NP‐AM. No differences in postprandial energy expenditure (PPEE) occurred between meals. When combining acute meals, respiratory exchange ratio was lower (p < 0.05) and protein oxidation (p < 0.001) was higher in the HP‐CD vs. NP‐CD. An acute meal‐by‐chronic diet interaction was observed with PPEE such that HP‐AM led to greater PPEE in the HP‐CD vs. NP‐CD (28.7 ± 2.7 vs. 19.9 ± 2.7 kcal/min for 195 minutes; p < 0.05). Conclusions: During weight loss, thermogenesis and protein use appear to be influenced by chronic protein intake, while appetite and ghrelin are more responsive to acute protein intake.  相似文献   

4.
Objective: To determine effects of dietary fat content on vascular responses in different conduit arteries in mice. Methods and Procedures: Vascular responses to reactive oxygen species (ROS)/hydroxyl radical (·OH), acetylcholine (ACh), endothelin‐1 (ET‐1), and angiotensin II (Ang II) were determined in carotid and femoral arteries of C57BL/6J mice fed with diets varying in fat content (low fat (LF), 12.3%; high fat (HF), 41%; and very high fat (VHF), 58% (kcal from fat)) for 15 weeks, beginning at 4 weeks of age. Results: In precontracted rings of carotid and femoral artery, ROS/·OH‐induced a rapid, transient vasodilation. In the carotid, but not in femoral artery, ROS/·OH‐induced dilation increased with increasing dietary fat intake (P < 0.05 vs. LF diet), while contractile responses to ROS/·OH remained unaffected. In femoral arteries, ROS/·OH‐induced contractions were reversed into relaxations after both HF and VHF diet (P < 0.05 vs. LF diet). Both ET‐1 and Ang II induced strong contractions in the femoral artery that were unaffected by dietary fat intake. In contrast, in the carotid artery Ang II–induced contraction was attenuated after HF and VHF diets (P < 0.005 vs. LF diet), whereas ET‐1‐induced vasoconstriction was significantly increased (P < 0.05 VHF vs. LF and HF). Treatment with VHF diet enhanced ACh‐mediated endothelium‐dependent relaxation only in the femoral artery (P < 0.05 vs. HF). Discussion: These findings demonstrate that dietary fat content has regional and distinct effects on vascular function in different vascular beds. The data also suggest the possibility that in selected conduit arteries ROS‐dependent vasodilator mechanisms become activated in response to increased dietary fat intake.  相似文献   

5.

Objective:

The aim of this study was to compare postprandial lipemia, oxidative stress, antioxidant activity, and insulinemia between a three and six isocaloric high‐carbohydrate meal frequency pattern in obese women.

Design and Methods:

In a counterbalanced order, eight obese women completed two, 12‐h conditions in which they consumed 1,500 calories (14% protein, 21% fat, and 65% carbohydrate) either as three 500 calorie liquid meals every 4‐h or six 250 calorie liquid meals every 2‐h. Blood samples were taken every 30 min and analyzed for triacylglycerol (TAG), total cholesterol, high‐density lipoprotein cholesterol, low‐density lipoprotein cholesterol, oxidized low‐density lipoprotein cholesterol, myeloperoxidase, paraoxonase‐1 activity, and insulin.

Results:

The TAG incremental area under the curve (iAUC) during the three meal condition (321 ± 129 mg/dl·12 h) was significantly lower (P = 0.04) compared with the six meal condition (481 ± 155 mg/dl·12 h). The insulin iAUC during the three meal condition (5,549 ± 1,007 pmol/l.12 h) was significantly higher (P = 0.05) compared with the six meal condition (4,230 ± 757 pmol/l.12 h). Meal frequency had no influence on the other biochemical variables.

Conclusions:

Collectively, a three and six isocaloric high‐carbohydrate meal frequency pattern differentially alters postprandial TAG and insulin concentrations but has no effect on postprandial cholesterol, oxidative stress, or antioxidant activity in obese women.  相似文献   

6.

Objective:

Consuming smaller, more frequent meals is often advocated as a means of controlling body weight, but studies demonstrating a mechanistic effect of this practice on factors associated with body weight regulation are lacking. The purpose of this study was to compare the effect of consuming three (3M) vs. six meals (6M) per day on 24‐h fat oxidation and subjective ratings of hunger.

Design and Methods:

Lean (body mass index <25 kg/m2) subjects (7M, 8F) were studied in a whole‐room calorimeter on two occasions in a randomized cross‐over design. Subjects were provided isoenergetic, energy balanced diets with a 1‐ to 2‐week washout between conditions. Hunger, fullness, and “desire to eat” ratings were assessed throughout the day using visual analog scales and quantified as area under the curve (AUC).

Results:

There were no differences (P < 0.05) in 24‐h energy expenditure (8.7 ± 0.3 vs. 8.6 ± 0.3 mj d?1), 24‐h respiratory quotient (0.85 ± 0.01 vs. 0.85 ± 0.01), or 24‐h fat oxidation (82 ± 6 vs. 80 ± 7 g day‐1) between 3M and 6M, respectively. There was no difference in fullness 24‐h AUC, but hunger AUC (41850 ± 2255 vs. 36612 ± 2556 mm.24 h, P = 0.03) and “desire to eat” AUC (47061 ± 1791 vs. 41170 ± 2574 mm.24 h, P = 0.03) were greater during 6M than 3M.

Conclusion:

We conclude that increasing meal frequency from three to six per day has no significant effect on 24‐h fat oxidation, but may increase hunger and the desire to eat.
  相似文献   

7.
Black women suffer a disproportionately higher rate of obesity than their white counterparts. Reasons for this racial disparity may reflect underlying differences in the appetite suppressing peptide‐YY (PYY). The PYY response to food is differentially influenced by macronutrient content but the effect of glycemic load on PYY response is unknown. This study examined whether glycemic load influences fasting and postprandial PYY levels and whether fasting and postprandial PYY levels are lower in obese black women compared to normal weight black women and to white women. Data were collected from 40 women (20 black, 20 white; 10 each normal weight vs. obese) at the University of North Carolina Clinical and Translational Research Center (CTRC). Participants completed in counterbalanced order two 4½‐day weight‐maintenance, mixed macronutrient high vs. low glycemic load diets followed by a test meal of identical composition. Total PYY levels were assessed before and after each test meal. Results show no differences in fasting PYY levels but significantly less postprandial PYY area under the curve (PYYAUC) in the group of obese black women compared to each other group (race × obesity interaction, P < 0.04). PYYAUC was positively related to insulin sensitivity (P < 0.004) but was not affected by glycemic load (main and interactive effects, P > 0.27). These findings indicate that postprandial PYY secretion is not affected by glycemic load but is blunted in obese black women compared with normal weight black women and with white women; additionally, they begin to address whether blunted PYY secretion contributes uniquely to the pathogenesis of obesity in black women.  相似文献   

8.

Objective:

Energy density (ED) and eating rate (ER) influence energy intake; their combined effects on intake and on postprandial pancreatic and gut hormone responses are undetermined. To determine the combined effects of ED and ER manipulation on voluntary food intake, subjective appetite, and postprandial pancreatic and gut hormone responses.

Design and Methods:

Twenty nonobese volunteers each consumed high (1.6 kcal g?1; HED) and low (1.2 kcal g?1; LED) ED breakfasts slowly (20 g min?1; SR) and quickly (80 g min?1; FR) ad libitum to satiation. Appetite, and pancreatic and gut hormone concentrations were measured periodically over 3 h. Ad libitum energy intake during the subsequent lunch was then measured.

Results:

Main effects of ED and ER on energy intake and a main effect of ER, but not ED, on mass of food consumed were observed, FR and HED being associated with increased intake (P < 0.05). Across all conditions, energy intake was highest during FR‐HED (P ≤ 0.01). Area under the curve (AUC) of appetite ratings was not different between meals. Main effects of ED and ER on insulin, peptide‐YY, and glucagon‐like peptide‐1 AUC (P < 0.05) were observed, FR and HED being associated with larger AUC. No effects on active or total ghrelin AUC were documented. Total energy intake over both meals was highest during the FR‐HED trial with the greatest difference between FR‐HED and SR‐LED trials (P ≤ 0.01).

Conclusion:

Consuming an energy dense meal quickly compounds independent effects of ER and ED on energy intake. Energy compensation at the following meal may not occur despite altered gut hormone responses.
  相似文献   

9.
Objective: Observational studies suggest that monounsaturated (MUFA) and trans fatty acids (TRANS) are more fattening than polyunsaturated fatty acids (PUFA). Therefore, the aim of this study was to investigate the acute effect of intake of PUFA, MUFA, or TRANS on appetite and energy expenditure (EE). Research Methods and Procedures: Three test meals were randomly given in a cross‐over design to 19 overweight (BMI: 26.8 ± 0.4 kg/m2), young (25.2 ± 0.7 years) men. The fat‐rich breakfasts (0.8 g fat/kg body weight, 60% energy from fat) varied only in the source of C:18‐fat. EE was measured continuously in a respiration chamber, and appetite sensations were rated by visual analog scales before and every 30 minutes, for 5 hours, after the meal. After 5 hours, an ad libitum meal was served, and energy intake was registered. Sensory evaluations of all meals were given using visual analog scales. Data were analyzed by two‐way ANOVA. Results: There were no differences in basal or postprandial values of appetite ratings and EE, in subsequent ad libitum energy intake, or in the sensory evaluation of the test meals among the 3 test days. Discussion: Giving acutely large amounts of MUFA, PUFA, or TRANS did not impose any differences in appetite and EE in overweight humans. However, studies with extended protocols and other subject groups are warranted to investigate the long‐term effect of dietary fat quality on the regulation of energy balance and body weight.  相似文献   

10.
Objective: To assess the effects of negative energy balance on the metabolic response of a meal containing either glucose or fructose as the primary source of carbohydrate after exercise in obese individuals in energy balance, or negative energy balance. Research Methods and Procedures: Fourteen adults with mean body mass index (BMI) 30.3 ± 1 kg/m2, age 26 ± 2 years, and weight 93.5 ± 5.4 kg, adhered to an energy‐balanced (EB) or a negative energy‐balanced (NEB) diet for 6 days. On Day 7, subjects exercised at 70% VO2peak for 40 minutes then consumed either high glucose (50 g of glucose, HG) or high fructose (50 g of fructose, HF) liquid meal. Substrate utilization was measured by indirect calorimetry for 3 hours. Blood samples were collected before exercise and 0, 30, 60, 120, and 180 minutes after consuming the meal. Results: The HG produced 15.9% greater glycemic (p < 0.05) and 30.9% larger insulinemic (p < 0.05) responses than the HF under both EB and NEB conditions. After the NEB diet, carbohydrate and fat oxidation did not differ for HG and HF. In contrast, carbohydrate oxidation increased 31%, and fat oxidation decreased 39% with HF compared with HG after the EB diet. Thus, HF and HG consumed after exercise produced marked differences in macronutrient oxidation when obese subjects followed an EB diet, but no difference when adhering to a NEB diet. Discussion: The data suggest that the use of fructose in supplements/meals may provide no additional benefit in terms of substrate utilization during a weight loss program involving diet and exercise.  相似文献   

11.
The postprandial state seems to have a direct influence on oxidative status and insulin resistance. We determined the effect of an increase in plasma triglycerides after a high‐fat meal on oxidative stress in severely obese patients with differing degrees of insulin resistance. The study was undertaken in 60 severely obese persons who received a 60‐g fat overload with a commercial preparation. Measurements were made of insulin resistance, the plasma activity of various antioxidant enzymes, the total antioxidant capacity (TAC) and the plasma concentration of thiobarbituric acid reactive substances (TBARS). The patients with greater insulin resistance had a lower plasma superoxide dismutase (SOD) activity (P < 0.05) and a greater glutathione peroxidase (GSH‐Px) activity (P < 0.05). The high‐fat meal caused a significant reduction in SOD activity and an increase in the plasma concentration of TBARS in all the patients. Only the patients with lower insulin resistance experienced a significant increase in plasma catalase activity (2.22 ± 1.02 vs. 2.93 ± 1.22 nmol/min/ml, P < 0.01), remaining stable in the patients with greater insulin resistance. These latter patients had a reduction in plasma TAC (6.92 ± 1.93 vs. 6.29 ± 1.80 mmol/l, P < 0.01). In conclusion, our results show a close association between the degree of insulin resistance and markers of oxidative stress, both before and after a high‐fat meal. The postprandial state causes an important increase in oxidative stress, especially in severely obese persons with greater insulin resistance. However, we are unable to determine from this study whether there is first an increase in oxidative stress or in insulin resistance.  相似文献   

12.
The aim of this study was to compare the acute effect of (i) meals rich in saturated fat, oleic acid, and α‐linolenic acid and (ii) meals rich in starch and fiber on markers of inflammation and oxidative stress in obese and lean women. In a crossover study, 15 abdominally obese women (age, 54 ± 9 years; BMI, 37.3 ± 5.5 kg/m2) and 14 lean women (age, 53 ± 10 years; BMI, 22.9 ± 1.9 kg/m2) consumed meals rich in cream (CR), olive oil (OL), canola oil (CAN), potato (POT), and All‐Bran (BRAN) in random order. Blood samples were collected before and up to 6 h after the meals and plasma interleukin‐6 (IL‐6), IL‐8, tumor necrosis factor‐α (TNF‐α), lipid peroxides (LPOs), free‐fatty acids (FFAs), insulin, glucose, and cortisol were measured. Plasma IL‐6 decreased significantly 1 h after the meals then increased significantly above baseline at 4 h and 6 h in obese women and at 6 h in lean women. The incremental area under the curve (iAUC) for IL‐6 was significantly (P = 0.02) higher in obese compared with lean women and was significantly lower following the high fiber BRAN meal compared with a POT meal (P = 0.003). Waist circumference (R = 0.491, P = 0.007) and cortisol AUC (R = ?0.415, P = 0.03) were significant determinants of the magnitude of 6 h changes in plasma IL‐6 after the meals. These findings suggest that the postprandial response of plasma IL‐6 concentrations may be influenced by the type of carbohydrate in the meal, central adiposity, and circulating cortisol concentrations in women.  相似文献   

13.
Objective: To examine the effects of ad libitum diets with three distinct levels of fat intake for the prevention of weight gain in sedentary, normal‐weight and overweight men and women. Methods and Procedures: Three hundred and five participants were randomized to one of three diets. The diets targeted <25% of energy from fat (low fat (LF)), between 28 and 32% of energy from fat (moderate fat (MF)), or >35% of energy from fat (high fat (HF)). Participants consumed two meals per day on weekdays and one meal per day on weekends in a university cafeteria over a 12‐week period. Energy and nutrient content of cafeteria foods were measured by digital photography. All meals and snacks consumed outside the cafeteria were measured by dietary recall. All analysis of energy and nutrient content was completed using Nutrition Data System for Research (NDS‐R) version 2005. Results: Two hundred and sixty participants completed the study. LF gained 0.1 ± 3.1 kg, MF gained 0.8 ± 2.5 kg, and HF gained 1.0 ± 2.2 kg and there was no gender or age effect. Longitudinal mixed modeling indicated a significant difference among the groups in weight over time (P = 0.0366). When adjusting for total energy intake, which was a significant predictor of weight over time, the global effect for the group was eliminated. Thus, increasing weight was a function of increasing energy but not increasing percentage of fat intake. Discussion: Energy intake, but not percentage of energy from fat, appears responsible for the observed weight gain. LF diets may contribute to weight maintenance and HF diets may promote weight gain due to the influence of fat intake on total energy intake.  相似文献   

14.
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance.  相似文献   

15.
Peroxisome proliferator‐activated receptor‐γ (PPARγ) may play a protective role in the regulation of vascular function, partly mediated by its effects on superoxide dismutase (SOD). The aim of this study was to determine the association between PPARγ expression in peripheral blood mononuclear cells (PBMCs) and SOD activity in morbidly obese persons with varying degrees of insulin resistance (IR). We studied in 10 morbidly obese persons (five with no IR and five with high IR) the effect of a high‐fat meal on the plasma activity of various antioxidant enzymes and the mRNA expression of PPARγ in PBMC. The high‐fat meal resulted in a significant decrease in plasma SOD activity, glutathione reductase (GSH‐Rd) activity, and mRNA expression of PPARγ only in the group of morbidly obese persons with high IR. PPARγ expression after the high‐fat meal correlated with the IR levels (r = ?0.803, P = 0.009) and the plasma SOD activity (r = 0.903, P = 0.001). Likewise, the reduction in PPARγ expression correlated with the increase in free fatty acids (FFA) (r = 0.733, P = 0.016). In conclusion, the decreased expression of PPARγ in PBMC in morbidly obese persons after a high‐fat meal was associated with the state of IR, the plasma SOD activity, and the changes in the concentration of FFA.  相似文献   

16.
Orexigenic and anorexigenic pathways mediate food intake and may be affected by meal composition. Our objective was to determine whether changes in levels of active ghrelin and peptide YY (PYY) differ in obese vs. normal‐weight adolescent girls following specific macronutrient intake and predict hunger and subsequent food intake. We enrolled 26 subjects: 13 obese and 13 normal‐weight girls, 12–18 years old, matched for maturity (as assessed by bone age) and race. Subjects were assigned a high‐carbohydrate, high‐protein, and high‐fat breakfast in random order. Active ghrelin and PYY were assessed for 4 h after breakfast and 1 h after intake of a standardized lunch. Hunger was assessed using a standardized visual analog scale (VAS). No suppression in active ghrelin levels was noted following macronutrient intake in obese or normal‐weight girls. Contrary to expectations, active ghrelin increased in obese girls following the high‐carbohydrate breakfast, and the percent increase was higher than in controls (P = 0.046). Subsequent food intake at lunch was also higher (P = 0.03). Following the high‐fat breakfast, but not other breakfasts, percent increase in PYY was lower (P = 0.01) and subsequent lunch intake higher (P = 0.005) in obese compared with normal‐weight girls. In obese adolescents, specific intake of high‐carbohydrate and high‐fat breakfasts is associated with greater increases in ghrelin, lesser increases in PYY, and higher intake at a subsequent meal than in controls. Changes in anorexigenic and orexigenic hormones in obese vs. normal‐weight adolescents following high‐carbohydrate and high‐fat meals may influence hunger and satiety signals and subsequent food intake.  相似文献   

17.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

18.

Objective:

To analyze the body fat (BF) content and distribution modifications in coronary artery disease (CAD) patients in response to a 1‐year combined aerobic and resistance exercise training (CET) program.

Design and Methods:

We followed two groups of CAD male patients for 12 months. One group consisted of 17 subjects (57 ± 12 years) who engaged in a CET program (CET group) and the other was a age‐matched control group of 10 subjects (58 ± 11 years). BF content and distribution were measured through dual energy X‐ray absorptiometry (DXA) at baseline and follow‐up.

Results:

We found no differences on body mass and BMI between baseline and end of follow‐up in both groups but, in CET group, we found significant reductions in all analyzed BF depots, including total BF (21.60 ± 6.00 vs. 20.32 ± 5.89 kg, P < 0.01), % total BF (27.8 ± 5.5 vs. 26.4 ± 5.4%, P < 0.05), trunk fat (12.54 ± 3.99 vs. 11.77 ± 4.01 kg, P < 0.05), % trunk fat (31.1 ± 6.9 and 29.2 ± 7.1%, P < 0.05), appendicular fat (8.22 ± 2.08 vs. 7.72 ± 2.037 kg, P < 0.01), % appendicular fat (25.7 ± 4.9 and 24.5 ± 4.9%, P < 0.05), and abdominal fat (2.95 ± 1.06 vs. 2.75 ± 1.10 kg, P < 0.05). Control group showed significant increase in appendicular fat (7.63 ± 1.92 vs. 8.10 ± 2.12 kg, P < 0.05).

Conclusions:

These results confirm the positive effect of CET on body composition of CAD patients, despite no changes in body mass or BMI. In this study, we observed no alterations on BF distribution meaning similar rate of fat loss in all analyzed BF depots. These results also alert for the limitations of BMI for tracking body composition changes.  相似文献   

19.
The objective of this study was to examine the postprandial response to an exogenous fat source in eight weight-stable postobese subjects (2;-3 years after gastric bypass) and eight matched control women, using a stable isotope, [13C]oleate. After a high fat breakfast meal (1,062 cal, 67% fat), [13C]oleate in triglyceride (TG)-rich lipoproteins (Sf >400 and Sf 20;-400) and nonesterified fatty acids (NEFA), and 13C in breath CO2, were monitored over 8 h. There were no differences in resting energy expenditure, thermic effect of food, carbohydrate/fat oxidation ratio, breath 13CO2 enrichment, or fecal fat content between postobese and control subjects. Postprandially, there was no difference in S(f) 20;-400 TG or NEFA, but postobese subjects had lower Sf >400 incremental area under the curve (AUC) (- 33%, P < 0.0025) and glucose [P < 0.01 by repeated measures analysis of variance (RM ANOVA)]. Postprandial 13C in Sf >400 TG returned to fasting levels 4 h earlier in postobese subjects and was lower than in control subjects at 4 and 6 h (P < 0.05 by RM ANOVA). The greatest difference was in the [13C]NEFA profiles. In control subjects [13C]NEFA increased markedly over 8 h; postobese subject [13C]NEFA remained close to fasting nonenriched values, and was strikingly lower than in control subjects (72% lower by AUC, P < 0.0001 by RM ANOVA). Finally, postobese subjects tended to have lower postprandial insulin (P < 0.01, 4 h), lower postprandial acylation-stimulating protein, and lower fasting leptin (-46%, P < 0.02). This study demonstrates clear metabolic differences in exogenous dietary fat partitioning in postobese women. These findings are compatible with an increased efficiency of dietary fat storage and suggest one possible mechanism for promotion of weight regain in postobese individuals.  相似文献   

20.
Objective: Abdominal obesity is associated with a fasting proinflammatory condition. However, not much is known of the potential variations in circulating inflammatory markers after food intake. The purpose of the present study was to examine postprandial changes in plasma tumor necrosis factor (TNF)‐α, interleukin (IL)‐6, and C‐reactive protein (CRP) concentrations in men and their potential associations with fat distribution and metabolic profile variables. Research Methods and Procedures: Thirty‐eight men were given a high‐fat meal in the morning after an overnight fast, and TNF‐α, IL‐6, and CRP levels were measured in plasma at 0, 4, and 8 hours after the meal. Physical and metabolic profiles were also assessed for each participant. Results: We observed a substantial increase in circulating IL‐6 levels (p < 0.0001) after the meal. Although postprandial variations in circulating TNF‐α levels across time failed to reach statistical significance (p = 0.02), we noted a significant decrease in plasma TNF‐α concentrations 4 hours (?10%, p < 0.001 vs. 0 hours) after food intake. Plasma CRP levels were not affected by the fat load. We also noted that insulin‐sensitive individuals displayed a less pronounced inflammatory response after food intake than insulin‐resistant subjects. Discussion: Results of the present study show that consumption of a high‐fat meal leads to an increase in plasma IL‐6 concentrations and transient decrease in circulating TNF‐α levels in overweight men. Our results suggest a possible role of insulin resistance in the modulation of the postprandial inflammatory response, which could, in turn, contribute to worsen the state of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号