首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA‐ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR‐mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.  相似文献   

2.
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.  相似文献   

3.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   

4.
In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.  相似文献   

5.
The S‐phase checkpoint is a surveillance mechanism, mediated by the protein kinases Mec1 and Rad53 in the budding yeast Saccharomyces cerevisiae (ATR and Chk2 in human cells, respectively) that responds to DNA damage and replication perturbations by co‐ordinating a global cellular response necessary to maintain genome integrity. A key aspect of this response is the stabilization of DNA replication forks, which is critical for cell survival. A defective checkpoint causes irreversible replication‐fork collapse and leads to genomic instability, a hallmark of cancer cells. Although the precise mechanisms by which Mec1/Rad53 maintain functional replication forks are currently unclear, our knowledge about this checkpoint function has significantly increased during the last years. Focusing mainly on the advances obtained in S. cerevisiae, the present review will summarize our understanding of how the S‐phase checkpoint preserves the integrity of DNA replication forks and discuss the most recent findings on this topic.  相似文献   

6.
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1−/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1−/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3−/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1−/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1−/− cells are associated with the accumulation of aberrant replication fork structures.  相似文献   

7.
Formation of primed single‐stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR‐mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA‐mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y‐family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9‐1‐1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9‐1‐1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.  相似文献   

8.
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.  相似文献   

9.
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.  相似文献   

10.
The regulation of DNA replication initiation is well documented, for both unperturbed and damaged cells. The regulation of elongation, or fork velocity, however, has only recently been revealed with the advent of new techniques allowing us to view DNA replication at the single cell and single DNA molecule levels. Normally in S phase, the progression of replication forks and their stability are regulated by the ATR-Claspin-Chk1 pathway. We recently showed that replication fork velocity varies across the human genome in normal and cancer cells, but that the velocity of a given fork is positively correlated with the distance between origins on the same DNA fiber. Accordingly, in DNA replication-deficient Bloom’s syndrome cells, reduced fork velocity is associated with an increased density of replication origins. Replication elongation is also regulated in response to DNA damage. In human colon carcinoma cells treated with the topoisomerase I inhibitor camptothecin, DNA replication is inhibited both at the level of initiation and at the level of elongation through a Chk1-dependent checkpoint mechanism. Together, these new findings demonstrate that replication fork velocity (fork progression) is coordinated with inter-origin distance and that it can be actively slowed down by Chk1-dependent mechanisms in response to DNA damage. Thus, we propose that the intra-S phase checkpoint consist of at least three elements: (1) stabilization of damaged replication forks; (2) suppression of firing of late origins; and (3) arrests of normal ongoing forks to prevent further DNA lesions by replication of a damaged DNA template.  相似文献   

11.
Background information. In budding yeast, the loss of either telomere sequences (in telomerase‐negative cells) or telomere capping (in mutants of two telomere end‐protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. Results. We report that in telomerase‐negative (tlc1Δ) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end‐protection proteins (cdc131 yku70Δ). In telomerase‐negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA‐damage‐induced cell‐cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53–Mrc1 complex in tlc1Δ rad9Δ cells, Mrc1 did not mediate the cell‐cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. Conclusions. These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53–Rad9‐mediated cell‐cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53–Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.  相似文献   

12.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   

13.
PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol?/?) on the downstream maintenance of cells after UV damage. We report that PrimPol?/? cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol?/? arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol?/? cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase.  相似文献   

14.
We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.  相似文献   

15.
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.  相似文献   

16.
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.  相似文献   

17.
The ATR pathway: fine-tuning the fork   总被引:8,自引:0,他引:8  
The proper detection and repair of DNA damage is essential to the maintenance of genomic stability. The genome is particularly vulnerable during DNA replication, when endogenous and exogenous events can hinder replication fork progression. Stalled replication forks can fold into deleterious conformations and are also unstable structures that are prone to collapse or break. These events can lead to inappropriate processing of the DNA, ultimately resulting in genomic instability, chromosomal alterations and cancer. To cope with stalled replication forks, the cell relies on the replication checkpoint to block cell cycle progression, downregulate origin firing, stabilize the fork itself, and restart replication. The ATR (ATM and Rad3-related) kinase and its downstream effector kinase, Chk1, are central regulators of the replication checkpoint. Loss of these checkpoint proteins causes replication fork collapse and chromosomal rearrangements which may ultimately predispose affected individuals to cancer. This review summarizes our current understanding of how the ATR pathway recognizes and stabilizes stalled replication forks.  相似文献   

18.
19.
Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号