首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Streptococcus pneumoniae Sp1610, a Class‐I fold S‐adenosylmethionine (AdoMet)‐dependent methyltransferase, is a member of the COG2384 family in the Clusters of Orthologous Groups database, which catalyzes the methylation of N1‐adenosine at position 22 of bacterial tRNA. We determined the crystal structure of Sp1610 in the ligand‐free and the AdoMet‐bound forms at resolutions of 2.0 and 3.0 Å, respectively. The protein is organized into two structural domains: the N‐terminal catalytic domain with a Class I AdoMet‐dependent methyltransferase fold, and the C‐terminal substrate recognition domain with a novel fold of four α‐helices. Observations of the electrostatic potential surface revealed that the concave surface located near the AdoMet binding pocket was predominantly positively charged, and thus this was predicted to be an RNA binding area. Based on the results of sequence alignment and structural analysis, the putative catalytic residues responsible for substrate recognition are also proposed.  相似文献   

3.
4.
Anamorsin is a recently identified molecule that inhibits apoptosis during hematopoiesis. It contains an N‐terminal methyltransferase‐like domain and a C‐terminal Fe‐S cluster motif. Not much is known about the function of the protein. To better understand the function of anamorsin, we have solved the crystal structure of the N‐terminal domain at 1.8 Å resolution. Although the overall structure resembles a typical S‐adenosylmethionine (SAM) dependent methyltransferase fold, it lacks one α‐helix and one β‐strand. As a result, the N‐terminal domain as well as the full‐length anamorsin did not show S‐adenosyl‐l ‐methionine (AdoMet) dependent methyltransferase activity. Structural comparisons with known AdoMet dependent methyltransferases reveals subtle differences in the SAM binding pocket that preclude the N‐terminal domain from binding to AdoMet. The N‐terminal methyltransferase‐like domain of anamorsin probably functions as a structural scaffold to inhibit methyl transfers by out‐competing other AdoMet dependant methyltransferases or acts as bait for protein–protein interactions.Proteins 2014; 82:1066–1071. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Severe Acute Respiratory Syndrome coronavirus 2 (SARS‐CoV‐2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS‐CoVs and Middle East Respiratory Syndrome coronavirus (MERS‐CoVs), the detailed information about SARS‐CoV‐2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high‐throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS‐CoV‐2 proteins and structures. Here we report two high‐resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.  相似文献   

6.
S‐formylglutathione hydrolases (FGHs) constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes, catalyzing the hydrolysis of S‐formylglutathione to formic acid and glutathione. While a large number of functional studies have been reported on these enzymes, few structural studies have so far been carried out. In this article we report on the functional and structural characterization of PhEst, a FGH isolated from the psychrophilic bacterium Pseudoalteromonas haloplanktis. According to our functional studies, this enzyme is able to efficiently hydrolyze several thioester substrates with very small acyl moieties. By contrast, the enzyme shows no activity toward substrates with bulky acyl groups. These data are in line with structural studies which highlight for this enzyme a very narrow acyl‐binding pocket in a typical α/β‐hydrolase fold. PhEst represents the first cold‐adapted FGH structurally characterized to date; comparison with its mesophilic counterparts of known three‐dimensional structure allowed to obtain useful insights into molecular determinants responsible for the ability of this psychrophilic enzyme to work at low temperature. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 669–677, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
RNase PH is a member of the family of phosphorolytic 3' --> 5' exoribonucleases that also includes polynucleotide phosphorylase (PNPase). RNase PH is involved in the maturation of tRNA precursors and especially important for removal of nucleotide residues near the CCA acceptor end of the mature tRNAs. Wild-type and triple mutant R68Q-R73Q-R76Q RNase PH from Bacillus subtilis have been crystallized and the structures determined by X-ray diffraction to medium resolution. Wild-type and triple mutant RNase PH crystallize as a hexamer and dimer, respectively. The structures contain a rare left-handed beta alpha beta-motif in the N-terminal portion of the protein. This motif has also been identified in other enzymes involved in RNA metabolism. The RNase PH structure and active site can, despite low sequence similarity, be overlayed with the N-terminal core of the structure and active site of Streptomyces antibioticus PNPase. The surface of the RNase PH dimer fit the shape of a tRNA molecule.  相似文献   

8.
Infection by Leishmania and Trypanosoma causes severe disease and can be fatal. The reduced effectiveness of current treatments is largely due to drug resistance, hence the urgent need to develop new drugs, preferably against novel targets. We have recently identified a mitochondrial membrane‐anchored protein, designated MIX, which occurs exclusively in these parasites and is essential for virulence. We have determined the crystal structure of Leishmania major MIX to a resolution of 2.4 Å. MIX forms an all α‐helical fold comprising seven α‐helices that fold into a single domain. The distribution of helices is similar to a number of scaffold proteins, namely HEAT repeats, 14‐3‐3, and tetratricopeptide repeat proteins, suggesting that MIX mediates protein–protein interactions. Accordingly, using copurification and mass spectroscopy we were able to identify several proteins that may interact with MIX in vivo. Being parasite specific, MIX is a promising new drug target and, thus, the structure and potential interacting partners provide a basis for structure‐guided drug discovery.  相似文献   

9.
A cDNA encoding a protein with a consensus sequence-type RNA-binding domain (CS-RBD) has been isolated from a Nicotiana sylvestris cDNA library. The deduced protein (designated RZ-1) contains CS-RBD in its N-terminal half, arginine/aspartic acid repeats in its center and a glycine-rich C-terminal region in which a zinc finger motif of the CCHC type is present. The corresponding gene appears to be expressed constitutively in all tobacco organs. Immunocytochemical assays revealed that RZ-1 is localized in the nucleoplasm of tobacco cultured cells. Glycerol gradient fractionation of tobacco nuclear lysates showed that RZ-1 is associated with a large ribonucleoprotein particle of around 60 S in size. Nucleic acid-binding assays indicated that RZ-1 binds preferentially to poly (G) and both the CS-RBD and glycine-rich region are necessary for its binding activity. A possible role of RZ-1 is discussed.  相似文献   

10.
Algal polysaccharides of diverse structures are one of the most abundant carbon resources for heterotrophic, marine bacteria with coevolved digestive enzymes. A putative sulfo‐mannan polysaccharide utilization locus, which is conserved in marine flavobacteria, contains an unusual GH99‐like protein that lacks the conserved catalytic residues of glycoside hydrolase family 99. Using X‐ray crystallography, we structurally characterized this protein from the marine flavobacterium Ochrovirga pacifica to help elucidate its molecular function. The structure reveals the absence of potential catalytic residues for polysaccharide hydrolysis, which—together with additional structural features—suggests this protein may be noncatalytic and involved in carbohydrate binding.  相似文献   

11.
Snake venom serine proteinases (SVSPs) are hemostatically active toxins that perturb the maintenance and regulation of both the blood coagulation cascade and fibrinolytic feedback system at specific points, and hence, are widely used as tools in pharmacological and clinical diagnosis. The crystal structure of a thrombin‐like enzyme (TLE) from Bothrops jararacussu venom (Jararacussin‐I) was determined at 2.48 Å resolution. This is the first crystal structure of a TLE and allows structural comparisons with both the Agkistrodon contortrix contortrix Protein C Activator and the Trimeresurus stejnegeri plasminogen activator. Despite the highly conserved overall fold, significant differences in the amino acid compositions and three‐dimensional conformations of the loops surrounding the active site significantly alter the molecular topography and charge distribution profile of the catalytic interface. In contrast to other SVSPs, the catalytic interface of Jararacussin‐I is highly negatively charged, which contributes to its unique macromolecular selectivity.  相似文献   

12.
The crystal structure of a tripeptide Boc‐Leu‐Val‐Ac12c‐OMe ( 1 ) is determined, which incorporates a bulky 1‐aminocyclododecane‐1‐carboxylic acid (Ac12c) side chain. The peptide adopts a semi‐extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the Cα,α‐dialkylated residue Ac12c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel β‐sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac12c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti‐parallel β‐sheet in crystals, twisted or helical β‐sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted β‐sheet assembly in crystals. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Vacuolar‐type ATPases (V‐ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A3B3 subcomplex of V‐ATPase at 2.8 Å resolution. The overall construction of the A3B3 subcomplex is significantly different from that of the α3β3 sub‐domain in FoF1‐ATP synthase, because of the presence of a protruding ‘bulge’ domain feature in the catalytic A subunits. The A3B3 subcomplex structure provides the first molecular insight at the catalytic and non‐catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non‐catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the FoF1‐ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A3B3 structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V‐ATPases.  相似文献   

14.
Goto-Ito S  Ito T  Ishii R  Muto Y  Bessho Y  Yokoyama S 《Proteins》2008,72(4):1274-1289
Methylation of the N1 atom of guanosine at position 37 in tRNA, the position 3'-adjacent to the anticodon, generates the modified nucleoside m(1)G37. In archaea and eukaryotes, m(1)G37 synthesis is catalyzed by tRNA(m(1)G37)methyltransferase (archaeal or eukaryotic Trm5, a/eTrm5). Here we report the crystal structure of archaeal Trm5 (aTrm5) from Methanocaldococcus jannaschii (formerly known as Methanococcus jannaschii) in complex with the methyl donor analogue at 2.2 A resolution. The crystal structure revealed that the entire protein is composed of three structural domains, D1, D2, and D3. In the a/eTrm5 primary structures, D2 and D3 are highly conserved, while D1 is not conserved. The D3 structure is the Rossmann fold, which is the hallmark of the canonical class-I methyltransferases. The a/eTrm5-defining domain, D2, exhibits structural similarity to some class-I methyltransferases. In contrast, a DALI search with the D1 structure yielded no structural homologues. In the crystal structure, D3 contacts both D1 and D2. The residues involved in the D1:D3 interactions are not conserved, while those participating in the D2:D3 interactions are well conserved. D1 and D2 do not contact each other, and the linker between them is disordered. aTrm5 fragments corresponding to the D1 and D2-D3 regions were prepared in a soluble form. The NMR analysis of the D1 fragment revealed that D1 is well folded by itself, and it did not interact with either the D2-D3 fragment or the tRNA. The NMR analysis of the D2-D3 fragment revealed that it is well folded, independently of D1, and that it interacts with tRNA. Furthermore, the D2-D3 fragment was as active as the full-length enzyme for tRNA methylation. The positive charges on the surface of D2-D3 may be involved in tRNA binding. Therefore, these findings suggest that the interaction between D1 and D3 is not persistent, and that the D2-D3 region plays the major role in tRNA methylation.  相似文献   

15.
A GH1 β‐glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4′‐galactosyllactose, a tri‐galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.  相似文献   

16.
Studies on the interactions between L ‐O‐ phosphoserine, as one of the simplest fragments of membrane components, and the Cinchona alkaloid cinchonine, in the crystalline state were performed. Cinchoninium L ‐O‐phosposerine salt dihydrate (PhSerCin) crystallizes in a monoclinic crystal system, space group P21, with unit cell parameters: a = 8.45400(10) Å, b = 7.17100(10) Å, c = 20.7760(4) Å, α = 90°, β = 98.7830(10)°, γ = 90°, Z = 2. The asymmetric unit consists of the cinchoninium cation linked by hydrogen bonds to a phosphoserine anion and two water molecules. Intermolecular hydrogen bonds connecting phosphoserine anions via water molecules form chains extended along the b axis. Two such chains symmetrically related by twofold screw axis create a “channel.” On both sides of this channel cinchonine cations are attached by hydrogen bonds in which the atoms N1, O12, and water molecules participate. This arrangement mimics the system of bilayer biological membrane. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
20.
Up to now, efforts to crystallize the cataract‐associated P23T mutant of human γD‐crystallin have not been successful. Therefore, insights into the light scattering mechanism of this mutant have been exclusively obtained from solution work. Here we present the first crystal structure of the P23T mutant at 2.5 Å resolution. The protein exhibits essentially the same overall structure as seen for the wild‐type protein. Based on our structural data, we confirm that no major conformational changes are caused by the mutation, and that solution phase properties of the mutant appear exclusively associated with cataract formation. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号