首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In an effort to explore the thermal limitations of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, the critical thermal maxima (Tcmax) of 1+ year Lake Nanita strain O. c. pleuriticus were evaluated when acclimated to 10, 15 and 20° C. The mean ±s.d. Tcmax for O. c. pleuriticus acclimated to 10° C was 24·6 ± 2·0°C (n = 30), for 15° C‐acclimated fish was 26·9 ± 1·5° C (n = 23) and for 20° C‐acclimated fish was 29·4 ± 1·1° C (n = 28); these results showed a marked thermal acclimation effect (Q10 = 1·20). Interestingly, there was a size effect within treatments, wherein the Tcmax of larger fish was significantly lower than that of smaller fish acclimated to the same temperature. The critical thermal tolerances of age 0 year O. c. pleuriticus were also evaluated from three separate populations: Lake Nanita, Trapper Creek and Carr Creek reared under ‘common‐garden’ conditions prior to thermal acclimation. The Trapper Creek population had significantly warmer Tcmax than the Lake Nanita population, but that of the Carr Creek fish had Tcmax similar to both Trapper Creek and Lake Nanita fish. A comparison of these O. c. pleuriticus Tcmax results with those of other stream‐dwelling salmonids suggested that O. c. pleuriticus are less resistant to rapid thermal fluctuations when acclimated to cold temperatures, but can tolerate similar temperatures when acclimated to warmer temperatures.  相似文献   

2.
The main finding of this study was that measuring maximum heart rate during incremental warming was an effective tool to estimate upper thermal limits in three small cyprinid Danio species, which differed significantly. Arrhenius breakpoint temperature for maximum heart rate, purportedly an index of optimum temperature, was 21·2 ± 0·4, 20·1 ± 0·4 and 18·9 ± 0·8° C (mean ± s.e .) for zebrafish Danio rerio, pearl danio Danio albolineatus and glowlight danio Danio choprae, respectively. The temperature where cardiac arrhythmias were first induced during warming (Tarr) was 36·6 ± 0·7, 36·9 ± 0·8 and 33·2 ± 0·8° C (mean ± s.e .) and critical thermal maximum (TCm) was 39·9 ± 0·1, 38·9 ± 0·1 and 37·2 ± 0·1° C (mean ± s.e .) for D. rerio, D. albolineatus and D. choprae, respectively. The finding that Tarr was consistently 3–4° C lower than TCm suggests that collapse of the cardiac life support system may be a critical trigger for upper temperature tolerance. The upper thermal limits established here, which correlate well with a broad natural environmental temperature range for D. rerio and a narrow one for D. choprae, suggest that upper thermal tolerance may be a genetic trait even among closely related species acclimated to common temperatures.  相似文献   

3.
4.
The response of the photosynthetic capacity (Pmax) of microphytobenthos to short-term variations of temperature (in the range 5–35° C) was assessed on a seasonal basis. The relationship is described mathematically, and relevant physiological parameters are identified: PMAX, the maximum value of Pmax achieved at Topl, the optimum temperature. Estimated values of Topt do not change significantly throughout the year and remain close to 25° C. It is thus concluded that Topt is not influenced by seasonal variations in the daily range of mud surface temperature. Identical conclusions hold for Tmax (ca. 38° C), the thermal threshold beyond which no photosynthesis occurs. Conversely, PMA estimates exhibit substantial variability: PMAX (mean ± root mean square error) is highest in April (11.18 ± 0.42 [μg C · [μg Chl a]?1· h?1) during the beginning of the annual increase in temperature, photoperiod, and maximum irradiance and is lowest in December (3.04 ± 0.16 μg C · [μg Chl a]?1· h?l). From an ecological point of view, the short-term and seasonal variations of PMAX suggest that the microphytobenthic community takes advantage of the abiotic spring environmental conditions, allowing the onset of the bloom. Nevertheless, no “acclimation strategy” (i.e. shifts in Topt and Tmax that prevent temperature inhibition in summer or improve photosynthetic rates in winter) is apparent from our results.  相似文献   

5.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   

6.
The upper thermal tolerance of brook trout Salvelinus fontinalis was estimated using critical thermal maxima (CTmax) experiments on fish acclimated to temperatures that span the species' thermal range (5–25°C). The CTmax increased with acclimation temperature but plateaued in fish acclimated to 20, 23 and 25°C. Plasma lactate was highest, and the hepato-somatic index (IH) was lowest at 23 and 25°C, which suggests additional metabolic costs at those acclimation temperatures. The results suggest that there is a sub-lethal threshold between 20 and 23°C, beyond which the fish experience reduced physiological performance.  相似文献   

7.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

8.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

9.
This study quantified physiological responses of skilletfish Gobiesox strumosus exposed to thermal and oxic stress. Fish acclimated at 12, 22 and 32° C had low oxygen tolerance values (mean ±s.d .) of 0·40 ± 0·09, 0·40 ± 0·08 and 0·35 ± 0·03, and critical thermal maxima (mean ±s.d .) of 33·2 ± 0·5, 38·1 ± 0·0 and 39·5 ± 0·3° C, respectively. Furthermore, G. strumosus were oxygen conformers at all acclimation temperatures, i.e. the fish allowed oxygen consumption rates to decrease with ambient oxygen concentration. High temperature tolerance, low oxygen tolerance and decreasing metabolic rates during hypoxic events allow the fish to survive harsh environmental conditions encountered in their natural environment.  相似文献   

10.
The growth of Nile tilapia Oreochromis niloticus (0·02–20·00 g) was measured when fed to excess during the hours of light, following their exposure to five thermal regimes fluctuating around the thermal optimum for growth (Topt = 30° C) over the diel cycle of day (light, L) and night (dark, N), i.e. 27° C(L):33° C(N), 28·5° C(L):31·5° C(N), 30° C(L):30° C(N), 31·5° C(L):28·5° C(N) and 33° C(L):27° C(N) (two replicates per treatment, six weeks' rearing, growth measurements at weekly intervals). A model constructed with a stepwise multiple‐regression analysis accounted for 87·4% of the variation of the specific growth rate (G, % M day?1) from the variations of wet mass (M), the extent of the thermal fluctuation (FT) and their interactions, i.e. log10G = 1·7686 ? 0·2136 log10M + 0·0806 [log 10M× log 10 (1 + FT)] ? 0·0394 [log10M× log 10 (1 + FT)]2. Based on this model, the thermal fluctuation that produces the fastest growth ( ,°C) decreases in a curvilinear way, from 5·1° C at 20 mg to c. 0·7° C at 20 g. Thermal regimes that produce the slowest growth also produce the highest size heterogeneity. Functional hypotheses behind the size‐dependent effects of thermal fluctuations are discussed, together with their implications in natural habitats and aquaculture systems with in different contexts of food availability.  相似文献   

11.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

12.
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of genetically distinct redband trout Oncorhynchus mykiss in the high‐desert region of south‐eastern Oregon. The Tcrit values (29·4 ± 0·1° C) for small (40–140 g) redband trout from the three streams, and large (400–1400 g) redband trout at Bridge Creek were not different, and were comparable to published values for other salmonids. At high water temperatures (24–28° C), large fish incurred higher metabolic costs and were more thermally sensitive than small fish. Ucrit(3·6 ± 0·1 LF s?1), Rr(200 ± 13 mg O2 kg?0·830 h?1) and metabolic power (533 ± 22 mg O2 kg?0·882 h?1) were not significantly different between populations of small redband trout at 24° C. Rmax and metabolic power, however, were higher than previous measurements for rainbow trout at these temperatures. Fish from Bridge Creek had a 30% lower minimum total cost of transport (Cmin), exhibited a lower refusal rate, and had smaller hearts than fish at 12‐mile or Rock Creeks. In contrast, no differences in Ucrit or metabolism were observed between the two size classes of redband trout, although Cmin was significantly lower for large fish at all swimming speeds. Biochemical analyses revealed that fish from 12‐mile Creek, which had the highest refusal rate (36%), were moderately hyperkalemic and had substantially lower circulating levels of free fatty acids, triglycerides and albumin. Aerobic and anaerobic enzyme activities in axial white muscle, however, were not different between populations, and morphological features were similar. Results of this study: 1) suggest that the physiological mechanisms that determine Tcrit in salmonids are highly conserved; 2) show that adult (large) redband trout are more susceptible to the negative affects of elevated temperatures than small redband trout; 3) demonstrate that swimming efficiency can vary considerably between redband trout populations; 4) suggest that metabolic energy stores correlate positively with swimming behaviour of redband trout at high water temperatures; 5) question the use of Tcrit for assessing physiological function and defining thermal habitat requirements of stream‐dwelling salmonids like the redband trout.  相似文献   

13.
Experimental measurements were collected in the laboratory to evaluate the maximum thermal limit and thermal plasticity of Neotropical juvenile fish with different life habitats (demersal and pelagic) from surf zone in response to a “heat‐wave experiment”. Trials were conducted using two temperature acclimations (Ta), including the current average temperature of Southeastern Brazil (Ta: 14 days at 25°C) and the “heat‐wave experiment” (Ta: 14 days at 30°C), simulating a heat‐wave event that occurs when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C. Typical species of the surf zone were used: the demersal White sea catfish (Genidens barbus) and Gulf kingcroaker (Menticirrhus littoralis), and the pelagic fishes Great pompano (Trachinotus goodei) and Long‐fin mullet (Mugil brevirostris). The thermal range and plasticity values for the both life‐habitats species were verified through current and heat‐wave acclimation. The thermal tolerance at high temperatures (CTmax) of these species differed between Ta, habitat and species. Fish showed a species‐specific response to temperature increase, regardless of their habitat even under similar abiotic conditions. However, at the heat‐wave simulation, the demersal fish presented a greater thermal plasticity in relation to the pelagic fish. Despite the higher thermal tolerance when exposed to heat‐wave simulation, all fish species displayed a lower thermal edge safety that is markedly close to their maximum thermal limits.  相似文献   

14.
The Cape Fold Ecoregion (CFE) is a biodiversity hotspot with high levels of endemism in its freshwater fish fauna. This study examined inter and intra-specific variation in critical thermal maxima (TCmax) for eight native species of freshwater fish from the CFE. Cape galaxias Galaxias zebratus, Breede River redfin Pseudobarbus burchelli, Berg River redfin Pseudobarbus burgi, Clanwilliam redfin Pseudobarbus calidus and fiery redfin Pseudobarbus phlegethon were the most thermally sensitive (TCmax = 29.8–32.8°C). Clanwilliam rock-catfish Austroglanis gilli, Eastern Cape redfin Pseudobarbus afer and Cape kurper Sandelia capensis were moderately sensitive (TCmax = 33.0–36.8°C). An increase in intra-specific thermal sensitivity of S. capensis was observed from east to west. The results were related to in situ water temperature, which influenced TCmax for all species, suggesting that thermal history is a major driver of variation in thermal tolerance amongst populations. These thermal tolerance data for freshwater fishes in the CFE demonstrate that resilience to climate warming follows a geographical cline and that the more sensitive western species and regions are conservation priorities.  相似文献   

15.
Temperature dependence of two parameters in a photosynthesis model   总被引:7,自引:2,他引:5  
The temperature dependence of the photosynthetic parameters Vcmax, the maximum catalytic rate of the enzyme Rubisco, and Jmax, the maximum electron transport rate, were examined using published datasets. An Arrehenius equation, modified to account for decreases in each parameter at high temperatures, satisfactorily described the temperature response for both parameters. There was remarkable conformity in Vcmax and Jmax between all plants at Tleaf < 25 °C, when each parameter was normalized by their respective values at 25 °C (Vcmax0 and Jmax0), but showed a high degree of variability between and within species at Tleaf > 30 °C. For both normalized Vcmax and Jmax, the maximum fractional error introduced by assuming a common temperature response function is < ± 0·1 for most plants and < ± 0·22 for all plants when Tleaf < 25 °C. Fractional errors are typically < ± 0·45 in the temperature range 25–30 °C, but very large errors occur when a common function is used to estimate the photosynthetic parameters at temperatures > 30 °C. The ratio Jmax/Vcmax varies with temperature, but analysis of the ratio at Tleaf = 25 °C using the fitted mean temperature response functions results in Jmax0/Vcmax0 = 2·00 ± 0·60 (SD, n = 43).  相似文献   

16.
Common killifish Fundulus heteroclitus were acclimated to ecologically relevant temperatures (5, 15 and 33°C) and their maximum heart rate (fHmax) was measured at each acclimation temperature during an acute warming protocol. Acclimation to 33°C increased peak fHmax by up to 32% and allowed the heart to beat rhythmically at a temperature 10°C higher when compared with acclimation to 5°C. Independent of acclimation temperature, peak fHmax occurred about 3°C cooler than the temperature that first produced cardiac arrhythmias. Thus, when compared with previously published values for the critical thermal maximum of F. heteroclitus, the temperature for peak fHmax was cooler and the temperature that first produced cardiac arrhythmias was similar to these critical thermal maxima. The considerable thermal plasticity of fHmax demonstrated in the present study is entirely consistent with eurythermal ecology of killifish, as shown previously for another eurythermal fish Gillichthys mirabilis.  相似文献   

17.
Abstract The effect of seven constant temperatures of 15, 20, 25, 27, 30, 35 and 37°C on developmental time of Neoseiulus barkeri Hughes were determined in laboratory conditions under 65%± 5% RH and a photoperiod of 12 : 12 (L : D) h on nymphal stages of Tetranychus urticae Koch. Total developmental time of females (from egg to adult emergence) at the above‐mentioned temperatures was 26.59, 14.43, 6.32, 5.64, 4.59, 3.98 and 4.67 days, respectively. Developmental rate of the N. barkeri increased as temperature increased from 15 to 35°C, but declined at 37°C. A linear and two nonlinear models were fitted to developmental rate of immature stages of N. barkeri to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (K) and critical temperatures (i.e., Tmin, Topt and Tmax). The estimated values of the Tmin and K for total developmental time using the linear model were 12.07°C and 86.20 degree‐days (DD), respectively. The Tmin and Tmax estimated by the Sharpe‐Schoolfield‐Ikemoto (SSI) model were 11.90°C and 37.41°C, respectively. The estimated Topt for overall immature stage development of N. barkeri by the Lactin and SSI models were 33.89°C and 24.51°C, respectively. Based on the biological criteria of model evaluation, the linear and SSI models were found to be the best models for describing the developmental rate of overall immature stages of N. barkeri and estimating the temperature thresholds.  相似文献   

18.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

19.
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

20.
The effect of temperature on the development and fecundity of Sancassania polyphyllae fed on tissues of Polyphylla fullo larvae was studied at 15, 20, 25, 30, and 35 ± 1°C and 65 ± 10% RH in a dark incubator. Mean developmental period of immature stages decreased significantly with increasing temperatures from 15 to 30°C. Developmental periods at 30–35°C were not significantly different. The estimated lower developmental thresholds of the various immature stages ranged between 10.1 and 11.5°C. The thermal constant for the egg-to-female adult was 93.5 degree-days. The pre-oviposition, oviposition, and post-oviposition periods and female longevity were significantly longer at 15°C than at higher temperatures. Mean total and daily fecundity were the highest at 25°C, which were significantly different from those obtained at 15, 20 and 30°C. The net reproductive rate (R 0) was the highest at 25°C (588.3 ♀/♀). The longest mean generation time (T 0) occurred at 15°C (36 days) and the shortest occurred at 30°C (9.2 days). The highest intrinsic rate of increase (r m) for S. polyphyllae was observed at 25 (0.61 ♀/♀/day) and 30°C (0.62 ♀/♀/day).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号