首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Via a Mannich reaction involving a dibenzyliminium species and the titanium enolates of Evans' chiral acylated oxazolidinones the β2‐amino acids (R)‐ and (S)‐Fmoc‐β2homovaline and (R)‐Fmoc‐β2homoleucine are synthesized. These building blocks were used, in combination with commercially available α‐ and β3‐amino acids, for the synthesis of the cyclo‐(αβ3αβ2α)2 peptide 2 and the cyclo‐(αβ2αβ3α)2 peptides 3 – 5 . The peptides 2 – 5 were screened for their ability to inhibit a small panel of Gram‐negative and Gram‐positive bacterial strains.  相似文献   

2.
The Pictet–Spengler (PS) cyclizations of β3hTrp derivatives as arylethylamine substrates were performed with L‐α‐amino and D‐α‐amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3‐disubstituted 1,2,3,4‐tetrahydro‐β‐carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β‐turn induction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
This review gives a broad overview of the state of play with respect to the synthesis, conformational properties, and biological activity of α‐fluorinated β‐amino acids and derivatives. General methods are described for the preparation of monosubstituted α‐fluoro‐β‐amino acids (Scheme 1). Nucleophilic methods for the introduction of fluorine predominantly involve the reaction of DAST with alcohols derived from α‐amino acids, whereas electrophilic sources of fluorine such as NFSI have been used in conjunction with Arndt? Eistert homologation, conjugate addition or organocatalyzed Mannich reactions. α,α‐Difluoro‐β‐amino acids have also been prepared using DAST; however, this area of synthesis is largely dominated by the use of difluorinated Reformatsky reagents to introduce the difluoro ester functionality (Scheme 9). α‐Fluoro‐β‐amino acids and derivatives analyzed by X‐ray crystal and NMR solution techniques are found to adopt preferred conformations which are thought to result from stereoelectronic effects associated with F located close to amines, amides, and esters (Figs. 26). α‐Fluoro amide and β‐fluoro ethylamide/amine effects can influence the secondary structure of α‐fluoro‐β‐amino acid‐containing derivatives including peptides and peptidomimetics (Figs. 79). α‐Fluoro‐β‐amino acids are also components of a diverse range of bioactive anticancer (e.g., 5‐fluorouracil), antifungal, and antiinsomnia agents as well as protease inhibitors where such fluorinated analogs have shown increased potency and spectrum of activity.  相似文献   

4.
Pseudomonas sp. MX‐058 produces aldehyde oxidase catalysing glyoxal to glyoxylic acid. Two aldehyde oxidases (F10 and F13) were purified to homogeneity from Pseudomonas sp. MX‐058. F10 and F13 had subunit structures, a heterotetramer and heteropentamer respectively. The N‐terminal amino acid sequences of all subunits were highly homologous to amino acid sequences of the putative oxidoreductases of Pseudomonas strains. All of these homologous oxidoreductases have a heterotrimer structure consisting of 85‐88 (α), 37‐39 (β) and 18‐23 (γ) kDa subunits. However, the α‐subunits of F10 and F13 might have decomposed into two [80 (α1) and 9 kDa (α2)] and three [58 (α1′), 22 (α1″) and 9 (α2) kDa] subunits, respectively, while the β‐ and γ‐subunits remained intact. Both F10 and F13 show high activity toward several aliphatic and aromatic aldehydes. The aldehyde oxidases of Pseudomonas sp. MX‐058 has unique protein structures, α1α2βγ for F10 and α1′α1″α2βγ for F13, a heterotetramer and heteropentamer respectively. The enzymes exhibit significantly low activity toward glyoxylic acid compared with glyoxal, which is an advantageous property for glyoxylic acid production from glyoxal.  相似文献   

5.
6.
The monoclonal antibody 33B6 was found to be specific for the β1 integrin subunit. Treatment of leukocytes with this antibody induced a vigorous homotypic aggregation that had similar physiologic conditions as aggregation induced by a monoclonal antibody specific for the α4 subunit. Expression of a β1 subunit on the cell surface was not sufficient for mAb 33B6-mediated aggregation to occur, since cells of the K562 erythroleukemia line failed to respond even though they expressed the β1 subunit and the 33B6 epitope. However, after transfection with cDNA encoding the α4 subunit, K562 cells acquired the ability to aggregate in response to mAb 33B6 binding. By contrast, mAb 33B6 blocked cell binding to the endothelial surface protein vascular cell adhesion molecule-1 and the extracellular matrix protein fibronectin. These results suggest that the β1 epitope defined by mAb 33B6 may play a novel role in regulating leukocyte adhesive interactions.  相似文献   

7.
In teleosts, gonadotropin-releasing hormone (GnRH) and gonadotropin hormone (GTH) play important roles in regulating gonadal development and maturation. In Southeast Asia, the longtooth grouper, Epinephelus bruneus, is a commercially important aquaculture fish. In this study, we cloned and characterized the longtooth grouper GnRH1 gene and cDNAs of three gonadotropin subunits (GTHα, FSHβ, LHβ). The GnRH1 gene of longtooth grouper was 4, 032 bp long, and contained four exons, 61, 151, 99, and 423 bp long. GTHα, FSHβ, and LHβ cDNAs were 509, 576, and 579 bp, respectively. Phylogenetic and Southern hybridization analyses revealed that the longtooth grouper GTH subunits were evolutionarily close to those of groupers and are one-copy genes. RT-PCR analyses showed that GTH subunit mRNAs were expressed at a higher level in the pituitary glands of immature fish than in those of mature fish, suggesting a role in gonadal maturation.  相似文献   

8.
One nicotinic acetylcholine receptor non-α subunit was cloned from the pond wolf spider, Pardosa pseudoannulata, an important predatory enemy of some insect pests with agricultural importance, such as the green peach aphid Myzus persicae. The subunit shows high amino acid identities to insect β1 subunits (74–78%), and was denoted as Ppβ1. Although high identities are found between Ppβ1 and insect β1 subunits, amino acid differences are found within loops D, E and F, important segments contributing to ligand binding. The effects of amino acid differences within these loops were evaluated by introducing loops of insect or spider β1 subunits into rat β2 subunit and co-expressing with insect α subunit. The corresponding regions of rat β2 chimera β2Mpβ1 (β2 with loops D, E and F from M. persicae β1 subunit Mpβ1) were replaced by loops D, E and F of Ppβ1 singly or together to construct different chimeras. When these chimeras were co-expressed with insect Nlα1, it was found that the replacement of loops D, E and F of β2Mpβ1 by that of Ppβ1 resulted in a right-ward shift of the imidacloprid dose–response curves, reflecting increases in EC50, compared to Nlα1/β2Mpβ1. By contrast, the influences on ACh potency were minimal. The further study showed that R81Q, N137G and F190W differences, within loops D, E and F respectively, contributed mainly to these sensitivity changes. This study contributes to our understanding of the molecular mechanism underlying selectivity of neonicotinoids against insects over spiders.  相似文献   

9.
10.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

11.
Human pancreatic islets show unique architecture in which α and δ cells are mostly at the peripheral and perivascular areas. It has remained unknown how such prototype is realized in every islet. Here, I report that fetal islets develop first in two distinct types consisting of β or α/δ cells, respectively. The α/δ islets are variable in shape, composed of α and δ cells evenly intermixed. They are vascularized better but encapsulated poorer than β islets in general. During the development, the β and α/δ islets adjoin and fuse with each other in such a way that α and δ cells form a crescent on β cells and, then, progress to encompass and encroach into β cells. Most mature‐form islets appear to develop through the fusion. Islets at various stages of fusion are present concurrently until late gestation, suggesting that the islet fusion is an ongoing developmental process. The α/δ islets appear to play a primary role for the process, approaching toward the fusion partner actively. Direct connection is present between the α/δ islets and neural ganglia undergoing active neurogenesis, suggesting an organ‐wide neuroendocrine network development. The fusion of precursor islets appears to be a principle of human pancreatic development providing the prototype of mature islets. The complex development might be a reference for in vitro reproduction of biologically competent islets.  相似文献   

12.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
This study aimed to define progesterone 5β‐reductases (P5βR, EC 1.3.99.6, enone 1,4‐reductases) as function‐associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His‐tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4‐reductase activity was demonstrated in vitro using progesterone and 2‐cyclohexen‐1‐one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2‐cyclohexen‐1‐one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function‐associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective.  相似文献   

14.
Functions of α‐ and β‐branch carotenoids in whole‐plant acclimation to photo‐oxidative stress were studied in Arabidopsis thaliana wild‐type (wt) and carotenoid mutants, lut ein deficient (lut2, lut5), n on‐p hotochemical q uenching1 (npq1) and s uppressor of z eaxanthin‐l ess1 (szl1) npq1 double mutant. Photo‐oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α‐ to β‐branch carotenoid composition (α/β‐ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β‐branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β‐ratios (lut5, szl1npq1) or without xanthophyll‐cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β‐ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β‐ratios. The results highlight the importance of proper regulation of the α‐ and β‐branch carotenoid pathways for whole‐plant acclimation, not only leaf photoprotection, under photo‐oxidative stress.  相似文献   

15.
7α‐Hydroxyfrullanolide ( 1 ), a known sesquiterpenoid, was isolated from Sphaeranthus indicus using an antibacterial‐activity‐directed fractionation method. This compound had exhibited a significant antibacterial activity against Gram‐positive bacteria. Chemical and microbial reactions were performed to prepare eight different analogues of compound 1 in order to evaluate these newly synthesized compounds for antibacterial activity. These compounds were 1β,7α‐dihydroxyfrullanolide ( 2 ), 7α‐hydroxy‐1‐oxofrullanolide ( 3 ), 4,5‐dihydro‐7α‐hydroxyfrullanolide ( 4 ), 11,13‐dihydro‐7α‐hydroxyfrullanolide ( 5 ), 13‐acetyl‐7α‐hydroxyfrullanolide ( 6 ), 2α,7α‐dihydroxysphaerantholide ( 7 ), 4α,5α‐epoxy‐7α‐hydroxyfrullanolide ( 8 ), and 4β,5β‐epoxy‐7α‐hydroxyfrullanolide ( 9 ). Microbial reactions on 1 using whole‐cell cultures of Cunninghamella echinulata and Curvularia lunata yielded compounds 2 – 4 . Incubation of compound 1 with the liquid cultures of Apsergillus niger and Rhizopus circinans yielded metabolites 5 – 7 , while 8 and 9 were prepared by carrying out an epoxidation reaction on 1 using meta‐chloroperbenzoic acid (mCPBA). Structures of compounds 2 – 9 were elucidated with the aid of extensive NMR spectral studies. Compounds 2 – 4 were found to be new metabolites. Compounds 1 – 9 were evaluated for antibacterial activity and found to exhibit a wide range of bioactivities. Antibacterial‐activity data of 1 – 9 suggested that the bioactivity of 1 is largely due to the presence of C(4)?C(5), C(11)?C(13), and a γ‐lactone moiety.  相似文献   

16.
We have isolated from the olfactory organ of the American lobster (Homarus americanus) two cDNA clones with homology to β subunits of G proteins. LobGβ1 contained a complete open reading frame that predicted an amino acid sequence with >80% identity to Gβ sequences from other species. LobGβ2 was a fragment of an open reading frame whose predicted amino acid sequence had 65–69% identity to other Gβ sequences. LobGβ2 mRNA was not detectable in the brain, eye plus eyestalk, leg, dactyl, olfactory organ, or tail muscle. In contrast, lobGβ1 was expressed in all these tissues as a single mRNA species of 6.4 kb and a protein of 37 kD. In the brain and olfactory organ, Gβ immunoreactivity was almost exclusively confined to neurites: the neuropil regions of the brain and the outer dendrites of the olfactory receptor neurons. Coimmunoprecipitation revealed that lobster Gβ interacted with both Gαs and Gαq. LobGβ1 is likely to be involved in a wide range of signaling events including olfactory transduction and synaptic transmission in the brain. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 525–536  相似文献   

17.
A series of tetrapeptide amides containing two aminoisobutyric acids (Aib) and two α‐methylphenylalanine ((αMe)Phe) units were prepared through the ‘azirine/oxazolone method’. New 2‐benzyl‐2‐methyl‐2H‐azirin‐3‐amines have been used for the selective introduction of (S)‐ and (R)‐(αMe)Phe, respectively. The solid‐state conformations of five tetrapeptide amides were determined by X‐ray crystallography. In all cases, two β‐turns stabilize 310‐helical conformations and it was confirmed that, in contrast to proteinogenic amino acids, the configuration of (αMe)Phe does not determine the screw sense of the helix.  相似文献   

18.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

20.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号