首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Intermediates in influenza induced membrane fusion.   总被引:34,自引:2,他引:32       下载免费PDF全文
T Stegmann  J M White    A Helenius 《The EMBO journal》1990,9(13):4231-4241
Our results show that the mechanism by which influenza virus fuses with target membranes involves sequential complex changes in the hemagglutinin (HA, the viral fusion protein) and in the contact site between virus and target membrane. To render individual steps amenable to study, we worked at 0 degree C which decreased the rate of fusion and increased the efficiency. The mechanism of fusion at 0 degree C and 37 degrees C was similar. The process began with a conformational change in HA which exposed the fusion peptides but did not lead to dissociation of the tops of the ectodomain of the trimer. The change in the protein led to immediate hydrophobic attachment of the virus to the target liposomes. Attachment was followed by a lag period (4-8 min at 0 degree C, 0.6-2 s at 37 degrees C) during which rearrangements occurred in the site of membrane contact between the virus and liposome. After a further series of changes the final bilayer merger took place. This final fusion event was not pH dependent. At 0 degree C efficient fusion occurred without dissociation of the top domains of the HA trimer, suggesting that a transient conformation of HA is responsible for fusion at physiological temperatures. The observations lead to a revised model for HA mediated fusion.  相似文献   

2.
The mechanism of membrane fusion induced by the influenza virus hemagglutinin (HA) has been extensively characterized. Fusion is triggered by low pH, which induces conformational changes in the protein, leading to insertion of a hydrophobic 'fusion peptide' into the viral membrane and the target membrane for fusion. Insertion perturbs the target membrane, and hour glass-shaped lipidic fusion intermediates, called stalks, fusing the outer monolayers of the two membranes, are formed. Stalk formation is followed by complete fusion of the two membranes. Structures similar to those formed by HA at the pH of fusion are found not only in many other viral fusion proteins, but are also formed by SNAREs, proteins involved in intracellular fusion. Substances that inhibit or promote HA-induced fusion because they affect stalk formation, also inhibit or promote intracellular fusion, cell–cell fusion and even intracellular fission similarly. Therefore, the mechanism of influenza HA-induced fusion may be a paradigm for many intracellular fusion events.  相似文献   

3.
The influenza virus enters target cells via the action of hemagglutinin proteins (HA) inserted into the viral envelope. HA promotes membrane fusion between the viral envelope and endosomal membrane at low pH, following viral binding to sialic acid-containing receptors on target cells, and internalization by endocytosis. The effect of target membrane sialic acid residues on the fusion activity of the influenza virus towards model membranes was evaluated by both reduction, (i.e. treating somatic cells with neuraminidase- (NA-) prior to virus-cell interactions), and by supplementing liposomes with the gangliosides GD1a and GT1b. The harshness of the neuraminidase pretreatment of target cells required to affect virus-induced membrane merging was found to greatly depend on the assay conditions, i.e. whether a virus-cell prebinding step at neutral pH was included prior to acidification. Minor concentrations of neuraminidase were found to greatly reduce virus fusion, but only in the absence of a prebinding step; they had no effect if this step was included. Although membrane merging was greatly reduced following cell neuraminidase pretreatment, virus-cell association at low pH was not disturbed proportionately. This probably reflects unspecific virus-cell binding under these conditions, probably of inactivated or aggregated virus particles, which does not translate into membrane merging. This seems to suggest both that target membrane sialic acid can protect the virus from losing its activity before triggering membrane merging, and that the importance of this interaction is not merely to ensure virus-target proximity. With liposomes, we found that both types of ganglioside supported efficient fusion, with GD1a promoting a slightly faster initial rate. However, in this case, virus-target proximity closely mirrored fusion activity, thus pointing to differential specificity between targets routinely used to assay influenza virus fusion activity.  相似文献   

4.
Fusion of influenza virus with target membranes is mediated by an acid-induced conformational change of the viral fusion protein hemagglutinin (HA) involving an extensive reorganization of the alpha-helices. A 'spring-loaded' displacement over at least 100 A provides a mechanism for the insertion of the fusion peptide into the target membrane, but does not explain how the two membranes are brought into fusion contact. Here we examine, by attenuated total reflection Fourier transform infrared spectroscopy, the secondary structure and orientation of HA reconstituted in planar membranes. At neutral pH, the orientation of the HA trimers in planar membranes is approximately perpendicular to the membrane. However, at the pH of fusion, the HA trimers are tilted 55-70 degrees from the membrane normal in the presence or absence of bound target membranes. In the absence of target membranes, the overall secondary structure of HA at the fusion pH is similar to that at neutral pH, but approximately 50-60 additional residues become alpha-helical upon the conformational change in the presence of bound target membranes. These results are discussed in terms of a structural model for the fusion intermediate of influenza HA.  相似文献   

5.
The interaction between influenza virus and target membrane lipids during membrane fusion was studied with hydrophobic photoactivatable probes. Two probes, the newly synthesized bisphospholipid diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine and the phospholipid analogue 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]-[2-3H]- undecanoyl]-sn-glycero-3-phosphocholine (Harter, C., B?chi, T., Semenza, G., and Brunner , J. (1988) Biochemistry 27, 1856-1864), were used. Both labeled the HA2 subunit of the virus at low pH. By measuring virus-liposome interactions at 0 degrees C, it could be demonstrated that HA2 was inserted into the target membrane prior to fusion. As we have recently demonstrated, at this temperature, exposure of the fusion peptide of HA2 takes place within 15 s after acidification, but fusion does not start for 4 min (Stegmann, T., White, J. M., and Helenius, A. (1990) EMBO J. 9, 4231-4241). HA2 was labeled at least 2 min before fusion. No labeling of the HA1 subunit was seen. These data indicate that fusion is triggered by a direct interaction of the HA2 subunit of a kinetic intermediate form of HA with the lipids of the target membrane. Most likely, it is the fusion peptide of HA2 that is inserted into the target membrane. Just before fusion, HA is thus an integral membrane protein in both membranes. In contrast, the bromelain-derived ectodomain of HA was labeled by 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]- [2-3H]undecanoyl)-sn-glycerol-3-phosphocholine at low pH but not by diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine. This indicates that insertion of the fusion peptide of the bromelain-derived ectodomain of HA into a membrane differs from that of viral HA during fusion.  相似文献   

6.
Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 A in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.  相似文献   

7.
The homotrimeric spike glycoprotein hemagglutinin (HA) of influenza virus undergoes a low pH-mediated conformational change which mediates the fusion of the viral envelope with the target membrane. Previous approaches predict that the interplay of electrostatic interactions between and within HA subunits, HA 1 and HA2, are essential for the metastability of the HA ectodomain. Here, we show that suspension media of low ionic concentration promote fusion of fluorescent labelled influenza virus X31 with erythrocyte ghosts and with ganglioside containing liposomes. By measuring the low pH mediated inactivation of the fusion competence of HA and the Proteinase K sensitivity of low pH incubated HA we show that the conformational change is promoted by low ionic concentration. We surmise that electrostatic attraction within the HA ectodomain is weakened by lowering the ionic concentration facilitating the conformational change at low pH. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

8.
Membrane fusion activity of influenza virus.   总被引:31,自引:2,他引:29       下载免费PDF全文
A simple assay is described to monitor fusion between fowl plague virus (FPV, an avian influenza A virus) and liposomes which allows the simultaneous quantitation of both lytic and non-lytic fusion events. As in fusion between viruses and the plasma membrane and in FPV-induced cell-cell fusion, the reaction only occurs at pH 5.5 or below, and it is fast, highly efficient, and essentially non-lytic when fresh virus and liposomes are used. The fusion occurs over a broad temperature range, and has no requirement for divalent cations. The fusion factor of influenza virus is a hemagglutinin (HA) spike which protrudes from the virus membrane and which is also responsible for virus binding to the host cell. The finding that fusion occurs as efficiently with liposomes containing or lacking virus receptor structures, further emphasizes the remarkable division of labor in the HA molecule: the receptor-binding sites are located in the globular HA1 domains and the fusion activation peptide is found at the N-terminal of HA2 in the stem region of the protein. The mechanism of fusion is discussed in terms of the three-dimensional structure of the HA and the conformational change which the protein undergoes at the fusion pH optimum.  相似文献   

9.
It has been suggested that the hepatitis C virus (HCV) infects host cells through a pH-dependent internalization mechanism, but the steps leading from virus attachment to the fusion of viral and cellular membranes remain uncharacterized. Here we studied the mechanism underlying the HCV fusion process in vitro using liposomes and our recently described HCV pseudoparticles (pp) bearing functional E1E2 envelope glycoproteins. The fusion of HCVpp with liposomes was monitored with fluorescent probes incorporated into either the HCVpp or the liposomes. To validate these assays, pseudoparticles bearing either the hemagglutinin of the influenza virus or the amphotropic glycoprotein of murine leukemia virus were used as models for pH-dependent and pH-independent entry, respectively. The use of assays based either on fusion-induced dequenching of fluorescent probes or on reporter systems, which produce fluorescence when the virus and liposome contents are mixed, allowed us to demonstrate that HCVpp mediated a complete fusion process, leading to the merging of both membrane leaflets and to the mixing of the internal contents of pseudoparticle and liposome. This HCVpp-mediated fusion was dependent on low pH, with a threshold of 6.3 and an optimum at about 5.5. Fusion was temperature-dependent and did not require any protein or receptor at the surface of the target liposomes. Most interestingly, fusion was facilitated by the presence of cholesterol in the target membrane. These findings clearly indicate that HCV infection is mediated by a pH-dependent membrane fusion process. This paves the way for future studies of the mechanisms underlying HCV membrane fusion.  相似文献   

10.
R Li  D Song  Z Zhu  H Xu  S Liu 《PloS one》2012,7(8):e41956
The influenza glycoprotein hemagglutinin (HA) plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA) calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.  相似文献   

11.
Enveloped viruses contain surface proteins that mediate fusion between the viral and target cell membranes following an activating stimulus. Acidic pH induces the influenza virus fusion protein hemagglutinin (HA) via irreversible refolding of a trimeric conformational state leading to exposure of hydrophobic fusion peptides on each trimer subunit. Herein, we show that cells expressing fowl plague virus HA demonstrate discrete switching behavior with respect to the HA conformational change. Partially activated states do not exist at the scale of the cell, activation of HA leads to aggregation of cell surface trimers, and newly synthesized HA refold spontaneously in the presence of previously activated HA. These observations imply a feedback mechanism involving self-catalyzed refolding of HA and thus suggest a mechanism similar to the autocatalytic refolding and aggregation of prions.  相似文献   

12.
The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.  相似文献   

13.
《The Journal of cell biology》1983,97(5):1365-1374
An efficient method has been devised to introduce lipid molecules into the plasma membrane of mammalian cells. This method has been applied to fuse lipid vesicles with the apical plasma membrane of Madin-Darby canine kidney cells. The cells were infected with fowl plague or influenza N virus. 4 h after infection, the hemagglutinin (HA) spike glycoprotein of the virus was present in the apical plasma membrane of the cells. Lipid vesicles containing egg phosphatidylcholine, cholesterol, and an HA receptor (ganglioside) were then bound to the cells at 0 degrees C. More than 85% of the vesicles were released by external neuraminidase at 0 degrees C or by simply warming the cells to 37 degrees C for 10 s, probably because of the action of the viral neuraminidase at the cell surface. However, when the cells were warmed to 37 degrees C in a pH 5.3 medium for 30 s, 50% of the bound vesicles could no longer be released by external neuraminidase. This only occurred when the HA protein had been cleaved into its HA1 and HA2 subunits. When we used influenza N virus, whose HA is not cleaved in Madin-Darby canine kidney cells, cleavage with external trypsin was required. The fact that the HA protein has fusogenic properties at low pH only in its cleaved form suggests that fusion of the vesicles with the plasma membrane had taken place. Further confirmation for fusion was obtained using an assay based on the decrease of energy transfer between two fluorescent phospholipids in a vesicle upon fusion of the vesicle with the plasma membrane (Struck, D. K., D. Hoekstra, and R. E. Pagano. 1981. Biochemistry, 20:4093-4099).  相似文献   

14.
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.  相似文献   

15.
The fusion of influenza virus with cultured cells has been investigated. The virus was labelled with the fluorescent probe octadecyl rhodamine B and fusion was monitored as fluorescence dequenching due to dilution of the probe from the viral into a cellular target membrane. Fusion with the plasma membrane does not occur, unless the extracellular pH is temporarily lowered. At neutral pH fusion occurs only after a lag phase of 10-15 min, the time required for virus internalization, and the reaction is inhibited by NH4Cl, indicating that it takes place in an intracellular acidic compartment, most likely the endosome. This suggests that influenza virus infects cells via the endocytic pathway.  相似文献   

16.
The temperature dependence of membrane interactions between PR8 influenza virus and virus receptor (GD1a)-containing liposomes was studied. For quantitation, the octadecylrhodamine B chloride (R18) membrane marker was incorporated into liposomes at quenched concentrations. Upon interaction with target membranes, the marker gets diluted, and dequenching can be measured in a fluorescence spectrophotometer. Rate constants were calculated from the dequenching curves under low pH conditions, which allow for fusion, and at neutral pH, where no specific fusion occurs. Activation energies were determined from Arrhenius plots. The results were compared with the temperature dependence of other viral activities like infectivity, hemolysis, and fusion with erythrocytes. For the slow reaction at pH 7.4, where only non-specific lipid transfer takes place, the activation energy was about 24 kcal/mole between 15 degrees C and 45 degrees C. For the fast, hemagglutinin (HA)-specific fusion reaction (pH 5.3), a very low activation energy (approximately 7 kcal/mole) was found between 25 degrees C and 37 degrees C, whereas below 25 degrees C it was much higher (approximately 34 kcal/mole). The temperature range with low activation energy coincides with the one for optimal infectivity, hemolysis, and fusion with erythrocytes. Furthermore, it is the same range in which the conformational change of HA takes place, which in the absence of a partner membrane leads to an irreversible inactivation of the fusion protein.  相似文献   

17.
New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.  相似文献   

18.
自2009年3月,甲型H1N1流感疫情相继在包括我国在内的许多国家暴发,对人体健康和社会经济发展造成了严重危害。血凝素(HA)蛋白是重要的病毒表面糖蛋白,主要有3种功能:①与宿主细胞表面受体结合;②引起病毒包膜与靶细胞间的膜融合;③刺激机体产生中和性抗体。本文综合了近年来的研究成果,对甲型H1N1流感病毒HA蛋白结构、主要功能、进化、抗原性的研究进展进行了综述。  相似文献   

19.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

20.
During membrane fusion, the influenza A virus hemagglutinin (HA) adopts an extended helical structure that contains the viral transmembrane and fusion peptide domains at the same end of the molecule. The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show that the region flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect to requirements for the folding of native HAs and length restrictions for membrane fusion activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号