首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao Q  Brydon EW  Palese P 《Journal of virology》2008,82(13):6419-6426
Influenza viruses are classified into three types: A, B, and C. The genomes of A- and B-type influenza viruses consist of eight RNA segments, whereas influenza C viruses only have seven RNAs. Both A and B influenza viruses contain two major surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA). Influenza C viruses have only one major surface glycoprotein, HEF (hemagglutinin-esterase fusion). By using reverse genetics, we generated two seven-segmented chimeric influenza viruses. Each possesses six RNA segments from influenza virus A/Puerto Rico/8/34 (PB2, PB1, PA, NP, M, and NS); the seventh RNA segment encodes either the influenza virus C/Johannesburg/1/66 HEF full-length protein or a chimeric protein HEF-Ecto, which consists of the HEF ectodomain and the HA transmembrane and cytoplasmic regions. To facilitate packaging of the heterologous segment, both the HEF and HEF-Ecto coding regions are flanked by HA packaging sequences. When introduced as an eighth segment with the NA packaging sequences, both viruses are able to stably express a green fluorescent protein (GFP) gene, indicating a potential use for these viruses as vaccine vectors to carry foreign antigens. Finally, we show that incorporation of a GFP RNA segment enhances the growth of seven-segmented viruses, indicating that efficient influenza A viral RNA packaging requires the presence of eight RNA segments. These results support a selective mechanism of viral RNA recruitment to the budding site.  相似文献   

2.
3.
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.  相似文献   

4.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

5.
Influenza virus genomic RNAs possess segment-specific packaging signals that include both noncoding regions (NCRs) and adjacent terminal coding region sequences. Using reverse genetics, an A/Puerto Rico/8/34 (A/PR/8/34) virus was rescued that contained a modified PB1 gene such that the PB1 packaging sequences were exchanged for those of the neuraminidase (NA) gene segment. To accomplish this, the PB1 open reading frame, in which the terminal packaging signals were inactivated by serial synonymous mutations, was flanked by the NA segment-specific packaging sequences including the NCRs and the coding region packaging signals. Next, the ATGs located on the 3′ end of the NA packaging sequences of the resulting PB1 chimeric segment were mutated to allow for correct translation of the full-length PB1 protein. The virus containing this chimeric PB1 segment was viable and able to stably carry a ninth, green fluorescent protein (GFP), segment flanked by PB1 packaging signals. Utilizing this method, we successfully generated an influenza virus that contained the genes coding for both the H1 hemagglutinin (HA) from A/PR/8/34 and the H3 HA from A/Hong Kong/1/68 (A/HK/1/68); both subtypes of HA protein were also incorporated into the viral envelope. Immunization of mice with this recombinant virus conferred complete protection from lethal challenge with recombinant A/PR/8/34 virus and with X31 virus that expresses the A/HK/1/68 HA and NA. Using the described methodology, we show that a ninth segment can also be incorporated by manipulation of the PB2 or PA segment-specific packaging signals. This approach offers a means of generating a bivalent influenza virus vaccine.Influenza viruses possess segmented, negative-sense RNA genomes and belong to the family of Orthomyxoviridae. Three types of influenza viruses have been identified: A, B, and C (24). Based on the two surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), type A viruses are further divided into different subtypes; there are now 16 HA subtypes (H1 to H16) and 9 NA subtypes (N1 to N9) of influenza A viruses (24). Current influenza A viruses circulating in humans include the H1N1 and H3N2 subtypes.The genomes of influenza A and B viruses consist of eight RNAs, while C viruses have only seven segments. Influenza virus genomic RNAs associate with nucleoprotein (NP) and three viral polymerase subunits (PB2, PB1, and PA), to form the ribonucleoprotein (RNP) complexes within virions (24). Previous data indicated that each segment of the influenza A/WSN/33 (H1N1) virus possesses segment-specific RNA packaging signals that include both the 3′ and 5′ noncoding regions (NCRs), as well as coding sequences at the two ends of each open reading frame (ORF) (4, 5, 10, 11, 13, 15, 22, 23, 28; and see Fig. 47.23 in reference 24). In addition, an electron microscopy study showed that the wild-type influenza A virus contains exactly eight RNPs within the virions, with seven RNPs surrounding a central one (19). These results suggest that influenza virus genome packaging is a specific process, with each particle containing eight unique RNA segments. Additional evidence supporting a specific packaging theory came from studies of defective interfering (DI) RNAs which contain internal deletions in the coding sequences. These short RNAs can be incorporated into the virus particles despite the fact that they do not encode full-length functional proteins. The finding that incorporation of DI RNAs interferes with the parent full-length RNAs in a segment-specific manner (1, 16, 17) also suggests that influenza virus genome packaging is a specific process.However, there are also data arguing that influenza virus RNA packaging can be nonspecific. First, studies showed that the two different RNA segments of influenza virus can be engineered to share the same set of 3′ and 5′ NCRs, which are important components of the influenza virus RNA packaging signals (18, 31). In addition, under specific circumstances, influenza virus is able to contain nine RNA segments, in which two of them share identical NCRs and partially identical coding region sequences (2, 29). Titrations of the nine-segment virus revealed a linear relationship between dilutions and plaque numbers, suggesting an influenza virus virion can incorporate more than eight segments (2).Herein, we describe a novel approach for the generation of nine-segment influenza viruses based on the manipulation of the segment-specific packaging signals. When the packaging sequences of the PB1 (or PB2 or PA) segment were replaced by those of the NA segment, influenza A/PR/8/34 virus was able to stably incorporate a ninth segment flanked by the PB1 (or PB2 or PA) packaging signals. Using this property, we successfully generated influenza viruses encoding two full-length HA glycoproteins: a subtype H1 A/PR/8/34 HA and a subtype H3 A/HK/1/68 HA. Immunization of mice with the virus carrying two HAs protected them from the lethal challenge with either A/PR/8/34 or X31 virus, the latter of which carries the HA and NA genes of A/HK/1/68. This approach can be used to construct live attenuated influenza vaccine viruses targeting two heterologous strains.  相似文献   

6.
Two glycoproteins, hemagglutinin (HA) and neuraminidase (NA), on the surface of influenza viruses play crucial roles in transfaunation, membrane fusion and the release of progeny virions. To explore the distribution of N-glycosylation sites (glycosites) in these two glycoproteins, we collected and aligned the amino acid sequences of all the HA and NA subtypes. Two glycosites were located at HA0 cleavage sites and fusion peptides and were strikingly conserved in all HA subtypes, while the remaining glycosites were unique to their subtypes. Two to four conserved glycosites were found in the stalk domain of NA, but these are affected by the deletion of specific stalk domain sequences. Another highly conserved glycosite appeared at the top center of tetrameric global domain, while the others glycosites were distributed around the global domain. Here we present a detailed investigation of the distribution and the evolutionary pattern of the glycosites in the envelope glycoproteins of IVs, and further focus on the H5N1 virus and conclude that the glycosites in H5N1 have become more complicated in HA and less influential in NA in the last five years.  相似文献   

7.
8.
禽流感病毒分型基因芯片的研制   总被引:11,自引:0,他引:11  
[目的]禽流感病毒是一种全球重要的人和动物呼吸道病病原,快速确定其不同亚型对于全球流感监测具有重要的意义.本研究意在研制一种可同时鉴定禽流感病毒所有亚型的方法.[方法]根据GenBank上已发表的禽流感病毒不同亚型(16个HA亚型和9个NA亚型)的基因序列,设计合成了25对特异性引物和1对通用引物,然后以各亚型病毒的参考株RNA作为模板,建立扩增不同亚型的多重RT-PCR方法.参考各亚型病毒靶cDNAs区域的保守序列设计了52条亚型特异的探针,进而利用扩增的各亚型病毒的靶cDNAs对其特异性进行评价.在此基础上,将设计好的探针点制到处理好的玻片上,制备了禽流感病毒分型鉴定基因芯片,结合所建立的扩增不同亚型的多重RT-PCR方法,开发了禽流感病毒亚型鉴定基因芯片试剂.利用收集自49个地区的2653份标本对其特异性和敏感性进行了初步评价.[结果]用于评价的各亚型参考毒株均出现良好的特异性杂交信号,检测的敏感度可达2.47 PFU/mL或2.5 ng靶DNA片段,而且与禽类常见的IBV、NDV等6种病毒均无交叉反应.[结论]证明该病毒分型基因芯片具有良好的特异性、敏感性.  相似文献   

9.
对流感病毒14个血凝素亚型的基因芯片检测技术进行了初步研究。通过RT-PCR克隆禽流感病毒血凝素基因片段,获得重组质粒。从重组质粒扩增大约500bp的DNA片段,浓缩后点到氨基化玻璃载体上,制成芯片。待检病毒样品用TRIzolLS提取RNA,反转录过程中用Cy5标记样品cDNAs。将标记样品与芯片杂交,扫描芯片上待检样品与芯片上捕捉探针的结合位点,杂交信号与预期设想一致。结果显示,DNA芯片技术可以提供一种有效的AIV血凝素亚型鉴别诊断方法。  相似文献   

10.
建立一种便捷、灵敏的检测方法,即逆转录环介导等温核酸扩增技术(RT-LAMP)用于H5N1亚型禽流感病毒基因检测.该技术使用特异对应于靶序列中8个基因区段的6条特异引物,在等温条件下进行核酸扩增反应.对51份实验感染动物及病毒培养标本的H5N1亚型禽流感病毒的HA、NA基因区进行了RT-LAMP检测,并以SYBR Green Ⅰ为反应指示剂进行了逆转录环介导等温核酸扩增技术,对该反应进行实时监控,经对扩增产物做内切酶验证和测序分析,证明RT-LAMP技术的特异性;同时,用10倍系列稀释的RNA样品对该检测方法的灵敏度进行了测试.结果显示:利用RT-LAMP技术成功检测到H5N1禽流感病毒的HA、NA基因区,且RT-LAMP与Real-time PCR结果呈现很好的一致性.此方法的灵敏度可达到能检测10个拷贝RNA分子水平.因此,RT-LAMP技术应用于H5N1亚型禽流感病毒的快速检测是一种可行的方法.  相似文献   

11.
Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids.  相似文献   

12.
H Jin  G P Leser  J Zhang    R A Lamb 《The EMBO journal》1997,16(6):1236-1247
The cytoplasmic tails of the influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA) are highly conserved in sequence for all virus subtypes and it is believed that assembly of this enveloped virus depends on interactions of these domains with cytoplasmic viral components. However, it is possible to rescue altered influenza viruses lacking either the HA or NA cytoplasmic tails. We have obtained an influenza virus that lacks both the cytoplasmic tail of HA and NA. Particle production is reduced approximately 10-fold but these particles, although having a fairly normal protein composition, are greatly elongated and of extended irregular shape. We propose a model in which the interactions of the cytoplasmic tails of HA and NA with an internal viral component are so important for spherical virion shape that there is dual redundancy in the interactions.  相似文献   

13.
Liang Y  Hong Y  Parslow TG 《Journal of virology》2005,79(16):10348-10355
The influenza A virus genome consists of eight negative-sense RNA segments. The cis-acting signals that allow these viral RNA segments (vRNAs) to be packaged into influenza virus particles have not been fully elucidated, although the 5' and 3' untranslated regions (UTRs) of each vRNA are known to be required. Efficient packaging of the NA, HA, and NS segments also requires coding sequences immediately adjacent to the UTRs, but it is not yet known whether the same is true of other vRNAs. By assaying packaging of genetically tagged vRNA reporters during plasmid-directed influenza virus assembly in cells, we have now mapped cis-acting sequences that are sufficient for packaging of the PA, PB1, and PB2 segments. We find that each involves portions of the distal coding regions. Efficient packaging of the PA or PB1 vRNAs requires at least 40 bases of 5' and 66 bases of 3' coding sequences, whereas packaging of the PB2 segment requires at least 80 bases of 5' coding region but is independent of coding sequences at the 3' end. Interestingly, artificial reporter vRNAs carrying mismatched ends (i.e., whose 5' and 3' ends are derived from different vRNA segments) were poorly packaged, implying that the two ends of any given vRNA may collaborate in forming specific structures to be recognized by the viral packaging machinery.  相似文献   

14.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

15.
Y Okuno  Y Isegawa  F Sasao    S Ueda 《Journal of virology》1993,67(5):2552-2558
When mice were immunized with the A/Okuda/57 (H2N2) strain of influenza virus, a unique monoclonal antibody designated C179 was obtained. Although C179 was confirmed to recognize the hemagglutinin (HA) glycoprotein by immunoprecipitation assays, it did not show hemagglutination inhibition activity to any of the strains of the three subtypes of influenza A virus. However, it neutralized all of the H1 and H2 strains but not the H3 strains. Moreover, it inhibited polykaryon formation induced by the H1 and H2 strains but not by the H3 strains. Two antigenic variants against C179 were obtained, and nucleotide sequence analysis revealed that amino acid sequences, from 318 to 322 of HA1 and from 47 to 58 of HA2, conserved among H1 and H2 strains were responsible for the recognition of C179. Since the two sites were located close to each other at the middle of the stem region of the HA molecule, C179 seemed to recognize these sites conformationally. These data indicated that binding of C179 to the stem region of HA inhibits the fusion activity of HA and thus results in virus neutralization and inhibition of cell-cell fusion. This is the first report which describes the presence of conserved antigenic sites on HA not only in a specific subtype but also in two subtypes of influenza A virus.  相似文献   

16.
It was shown that all eight RNA segments of influenza B viruses are most likely monocistronic and code for eight virus-specific polypeptides. A genetic map of the influenza B virus genome was established, and six polypeptides (P1 protein, nucleoprotein, hemagglutinin, neuraminidase, M protein, and nonstructural protein) were unambiguously assigned to specific RNA segments. Molecular weight estimates of the eight individual genes are obtained by using the glyoxal method. These results suggest that each influenza B virus RNA segment has a greater molecular weight than the influenza A virus RNA segment which codes for the analogous gene product.  相似文献   

17.
Shi W  Lei F  Zhu C  Sievers F  Higgins DG 《PloS one》2010,5(12):e14454

Background

More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza.

Methodology/Principal Findings

This paper describes an analysis and complete classification of all HA and NA gene sequences available in public databases using multivariate and phylogenetic methods.

Conclusions/Significance

We analyzed 18975 HA sequences and divided them into 280 subgroups according to multivariate and phylogenetic analyses. Similarly, we divided 11362 NA sequences into 202 subgroups. Compared to previous analyses, this work is more detailed and comprehensive, especially for the bigger datasets. Therefore, it can be used to show the full and complex phylogenetic diversity and provides a framework for studying the molecular evolution and epidemiology of type A influenza virus. For more than 85% of type A influenza HA and NA sequences into GenBank, they are categorized in one unambiguous and unique group. Therefore, our results are a kind of genetic and phylogenetic annotation for influenza HA and NA sequences. In addition, sequences of swine influenza viruses come from 56 HA and 45 NA subgroups. Most of these subgroups also include viruses from other hosts indicating cross species transmission of the viruses between pigs and other hosts. Furthermore, the phylogenetic diversity of swine influenza viruses from Eurasia is greater than that of North American strains and both of them are becoming more diverse. Apart from viruses from human, pigs, birds and horses, viruses from other species show very low phylogenetic diversity. This might indicate that viruses have not become established in these species. Based on current evidence, there is no simple pattern of inter-hemisphere transmission of avian influenza viruses and it appears to happen sporadically. However, for H6 subtype avian influenza viruses, such transmissions might have happened very frequently and multiple and bidirectional transmission events might exist.  相似文献   

18.
以H5N2亚型禽流感病毒毒株血凝素蛋白裂解位点碱性氨基酸为研究对象,对其密码子偏好性和对应mRNA序列的折叠二级结构特点进行研究和分析。旨在探讨裂解位点氨基酸对应mRNA核苷酸片段的二级结构与病毒致病力的关系,希望能对禽流感病毒的研究提供一些基础性信息。将mRNA样本按照序列等步长递增的方法,用RNAstructure 4.1程序预测这些样本的动态延伸折叠二级结构。序列和结构的分析结果:裂解位点的碱性氨基酸对富含腺嘌呤的密码子有强烈偏好;与碱性氨基酸对应的mRNA片段上的核苷酸主要位于折叠二级结构的单链环区,少数位于配对螺旋区。结果表明:裂解位点氨基酸对应的mRNA核苷酸形成发夹端环的大小与其碱性氨基酸的多少具有正相关性。  相似文献   

19.
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.  相似文献   

20.
设计带有BsmBI、BsaI或AarI酶切位点的引物,用RT-PCR扩增H9N2亚型禽流感病毒(AIV)的8个基因全长片段,克隆入双向转录/表达载体pHW2000,并在PB2、PB1和NA基因中共引入了3个沉默突变标签。将其2个表面基因(HA和NA基因)加上任意1个内部基因,而其它5个内部基因来自A/WSN/33,进行了6种3 5组合形式的基因重排,把相应组合的转录/表达质粒共转染COS-1细胞,均产生了预期组合、有感染性的H9N2亚型流感病毒,表明亲缘关系遥远的流感病毒可以互相获取基因片段产生重组病毒,提示表面结构基因和单个内部基因不足以限制H9N2AIV在哺乳动物细胞上的宿主范围,同时也验证了构建的8个转录/表达载体均能有效工作,为进一步研究H9N2亚型AIV基因结构与功能、AIV与宿主之间的关系打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号