首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

2.
In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes.  相似文献   

3.
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double‐strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non‐homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability.  相似文献   

4.
5.
The decatenation activity of topoisomerase II (Top2), which is widely conserved within the eukaryotic domain, is essential for chromosomal segregation in mitosis. It is less clear, however, whether Top2 performs the same function uniformly across the whole genome, and whether all its functions rely on decatenation. In the fission yeast, Schizosaccharomyces pombe, telomeres are bound by Taz1, which promotes smooth replication fork progression through the repetitive telomeric sequences. Hence, replication forks stall at taz1Δ telomeres. This leads to telomeric entanglements at low temperatures (⩽20°C) that cause chromosomal segregation defects and loss of viability. Here, we show that the appearance of entanglements, and the resulting cold sensitivity of taz1Δ cells, is suppressed by mutated alleles of Top2 that confer slower catalytic turnover. This suppression does not rely on the decatenation activity of Top2. Rather, the enhanced presence of reaction intermediates in which Top2 is clamped around DNA, promotes the removal of telomeric entanglements in vivo, independently of catalytic cycle completion. We propose a model for how the clamped enzyme–DNA complex promotes proper chromosomal segregation.  相似文献   

6.
The double-stranded telomeric binding protein TRF2 is expressed in many human cancers at elevated levels. Moreover, experimental overexpression of TRF2 in human cells causes replication stalling in telomeric tracts, which leads to drastic telomere shortening and fusion of deprotected chromosome ends. To understand which end joining pathway is involved in mediating these chromosome fusions, we overexpressed TRF2 in human HCT116 cell lines that were deficient for the DNA Ligase 4 (Lig4)-dependent classical non-homologous end joining (C-NHEJ) or the DNA Ligase 3 (Lig3)-dependent alternative non-homologous end joining (A-NHEJ) pathway. Surprisingly, abrogation of either Lig4 or nuclear Lig3 significantly reduced inter-chromosomal fusion of drastically shortened telomeres, suggesting that both the C-NHEJ and A-NHEJ pathways are involved in mediating this type of fusion. Fusion between deprotected sister chromatids, however, only required the Lig3-dependent A-NHEJ pathway. Interestingly, a previous study reported similar end joining pathway requirements for the fusion of critically shortened telomeres during a telomere attrition-based cellular crisis. We speculate that, as in cellular crisis, the same repair pathway(s) may drive clonal and genomic evolution in human cancers containing elevated TRF2 levels.  相似文献   

7.
Non‐homologous end joining (NHEJ) is the major model proposed for Agrobacterium T‐DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA‐PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM‐ and Rad3‐related (ATR), play an important role in ‘classical’ (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a ‘backup’ (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant‐specific DNA LIGASE VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild‐type plants, suggesting enhanced T‐DNA integration in these mutants. These results were confirmed using a promoter‐trap transformation vector that requires T‐DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus‐induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T‐DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T‐DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T‐DNA integration. Thus, T‐DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.  相似文献   

8.
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non‐homologous end‐joining (cNHEJ) is largely error‐free, alternative end‐joining pathways have been described that are intrinsically mutagenic. Which end‐joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9‐induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta‐mediated end‐joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end‐joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double‐strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ‐dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.  相似文献   

9.
Non‐homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double‐strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein–DNA complexes are not fully understood. Here, we show that the von Willebrand (vWA) domain of Ku80 fulfills a critical role in this process by recruiting Aprataxin‐and‐PNK‐Like Factor (APLF) into Ku‐DNA complexes. APLF, in turn, functions as a scaffold protein and promotes the recruitment and/or retention of XRCC4‐Lig4 and XLF, thereby assembling multi‐protein Ku complexes capable of efficient DNA ligation in vitro and in cells. Disruption of the interactions between APLF and either Ku80 or XRCC4‐Lig4 disrupts the assembly and activity of Ku complexes, and confers cellular hypersensitivity and reduced rates of chromosomal DSB repair in avian and human cells, respectively. Collectively, these data identify a role for the vWA domain of Ku80 and a molecular mechanism by which DNA ligase proficient complexes are assembled during NHEJ in mammalian cells, and reveal APLF to be a structural component of this critical DSB repair pathway.  相似文献   

10.
11.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

12.
13.
14.
Genistein (GES), a phytoestrogen, has potential chemopreventive and chemotherapeutic effects on cancer. The anticancer mechanism of GES may be related with topoisomerase II associated DNA double-strand breaks (DSBs). However, the precise molecular mechanism remains elusive. Here, we performed genetic analyses using human lymphoblastoid TK6 cell lines to investigate whether non-homologous DNA end joining (NHEJ) and homologous recombination (HR), the two major repair pathways of DSBs, were involved in repairing GES-induced DNA damage. Our results showed that GES induced DSBs in TK6 cells. Cells lacking Ligase4, an NHEJ enzyme, are hypersensitive to GES. Furthermore, the sensitivity of Ligase4−/− cells was associated with enhanced DNA damage when comparing the accumulation of γ-H2AX foci and number of chromosomal aberrations (CAs) with WT cells. In addition, cells lacking Rad54, a HR enzyme, also presented hypersensitivity and increased DNA damages in response to GES. Meanwhile, Treatment of GES-lacking enhanced the accumulation of Rad51, an HR factor, in TK6 cells, especially in Ligase4−/. These results provided direct evidence that GES induced DSBs in TK6 cells and clarified that both NHEJ and HR were involved in the repair of GES-induced DNA damage, suggesting that GES in combination with inhibition of NHEJ or HR would provide a potential anticancer strategy.  相似文献   

15.
Low‐dose (≤0.1 Gy) radiation‐induced adaptive responses could protect cells from high‐challenge dose radiation‐induced killing. The protective role is believed to promote the repair of DNA double‐strand breaks (DSBs) that are a severe threat to cell survival. However, it remains unclear which repair pathway, homologous recombination repair (HRR) or non‐homologous end‐joining (NHEJ), is promoted by low‐dose radiation. To address this question, we examined the effects of low‐dose (0.1 Gy) on high‐challenge dose (2–4 Gy) induced killing in NHEJ‐ or HRR‐deficient cell lines. We showed that 0.1 Gy reduced the high‐dose radiation‐induced killing for wild‐type or HRR‐deficient cells, but enhanced the killing for NHEJ‐deficient cells. Interestingly, low‐dose radiation also enhanced the killing for wild‐type cells exposed to high‐challenge dose radiation with high‐linear energy transfer (LET). Because it is known that high‐LET radiation induces an inefficient NHEJ, these results support that the low‐dose radiation‐stimulated protective role in reducing high‐challenge dose (low‐LET)‐induced cell killing might depend on NHEJ. In addition, we showed that low‐dose radiation activated the DNA‐PK catalytic subunit (DNA‐PKcs) and the inhibitor of DNA‐PKcs destroyed the low‐dose radiation‐induced protective role. These results suggest that low‐dose radiation might promote NHEJ through the stimulation of DNA‐PKcs activity and; therefore, increase the resistance of cells to high‐challenge dose radiation‐induced killing. J. Cell. Physiol. 226: 369–374, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high‐throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4‐Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI‐MS/MS and determined the minimal inhibitory fragment of the XRCC4‐interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix‐loop‐helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose‐dependent response curves for the disruption of the complex by either helix 2 or helix‐loop‐helix fragments revealed that potency of inhibition was greater for the larger helix‐loop‐helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix‐loop‐helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair. Proteins 2014; 82:187–194. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cells just before senescence and after bypassing senescence by inactivation of wild-type p53 function, we conclude that the accrual of five telomeres in G1 that are DDR+ but nonfusogenic is associated with p53-dependent senescence.  相似文献   

18.
Animal response to stressors such as harsh environmental conditions and demanding biological processes requires energy generated through increased mitochondrial activity. This results in the production of reactive oxygen species (ROS). In vitro and some in vivo studies suggest that oxidative damage of DNA caused by ROS is responsible for telomere shortening. Since telomere length is correlated with survival in many vertebrates, telomere loss is hypothesised to trigger cellular ageing and/ or to reflect the harshness of the environment an individual has experienced. To improve our understanding of stress‐induced telomere dynamics in non‐human vertebrates, we analysed 109 relevant studies in a meta‐analytical framework. Overall, the exposure to possible stressors was associated with shorter telomeres or higher telomere shortening rate (average effect size = ?0.16 ± 0.03). This relationship was consistent for all phylogenetic classes and for all a priori‐selected stressor categories. It was stronger in the case of pathogen infection, competition, reproductive effort and high activity level, which emphasises their importance in explaining intraspecific telomere length variability and, potentially, lifespan variability. Interestingly, the association between stressor exposure and telomeres in one hand, and oxidative stress in the other hand, covaried, suggesting the implication of oxidative stress in telomere dynamics.  相似文献   

19.
Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.  相似文献   

20.
Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号