首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.  相似文献   

3.
Rodent and in vitro studies suggest that thiazolidinediones promote adipogenesis but there are few studies in humans to corroborate these findings. The purpose of this study was to determine whether pioglitazone stimulates adipogenesis in vivo and whether this process relates to improved insulin sensitivity. To test this hypothesis, 12 overweight/obese nondiabetic, insulin‐resistant individuals underwent biopsy of abdominal subcutaneous adipose tissue at baseline and after 12 weeks of pioglitazone treatment. Cell size distribution was determined via the Multisizer technique. Insulin sensitivity was quantified at baseline and postpioglitazone by the modified insulin suppression test. Regional fat depots were quantified by computed tomography (CT). Insulin resistance (steady‐state plasma insulin and glucose (SSPG)) decreased following pioglitazone (P < 0.001). There was an increase in the ratio of small‐to‐large cells (1.16 ± 0.44 vs. 1.52 ± 0.66, P = 0.03), as well as a 25% increase in the absolute number of small cells (P = 0.03). The distribution of large cell diameters widened (P = 0.009), but diameter did not increase in the case of small cells. The increase in proportion of small cells was associated with the degree to which insulin resistance improved (r = ?0.72, P = 0.012). Visceral abdominal fat decreased (P = 0.04), and subcutaneous abdominal (P = 0.03) and femoral fat (P = 0.004) increased significantly. Changes in fat volume were not associated with SSPG change. These findings demonstrate a clear effect of pioglitazone on human subcutaneous adipose cells, suggestive of adipogenesis in abdominal subcutaneous adipose tissue, as well as redistribution of fat from visceral to subcutaneous depots, highlighting a potential mechanism of action for thiazolidinediones. These findings support the hypothesis that defects in subcutaneous fat storage may underlie obesity‐associated insulin resistance.  相似文献   

4.
5.
《Endocrine practice》2007,13(2):147-152
ObjectiveTo study the effects of pioglitazone, a peroxisome proliferator-activated receptor-γ agonist with vascular beneficial effects, and glipizide, an insulin secretagogue, on novel inflammatory vascular risk markers in subjects with and without type 2 diabetes.MethodsWe studied 11 subjects without diabetes and 19 matched subjects with diabetes. The subjects with diabetes were randomly assigned to receive either 45 mg daily of pioglitazone (N = 8) or 10 mg daily of glipizide (N = 11) (median dose) for 12 weeks. Lipoprotein-associated phospholipase A2 (LpPLA2), vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1), and e-selectin were measured by established techniques before and after therapy with either agent. The subjects without diabetes were studied only once.ResultsThe study subjects with diabetes had higher (P < 0.05) LpPLA2, e-selectin, and VCAM-1 levels than did those without diabetes. ICAM-1 levels tended to be higher (P = 0.07) in the study subjects with than in those without diabetes. Neither pioglitazone nor glipizide therapy significantly altered LpPLA2 or VCAM-1 concentrations. While pioglitazone therapy reduced (P < 0.05) e-selectin concentrations, glipizide therapy reduced (P < 0.03) ICAM-1 concentrations.ConclusionType 2 diabetes is associated with elevated concentrations of the novel vascular risk marker LpPLA2 and inflammatory risk markers e-selectin and VCAM-1. Neither pioglitazone nor glipizide significantly altered LpPLA2, VCAM-1, or highly sensitive C-reactive protein levels after 12 weeks of therapy. In study subjects with type 2 diabetes, e-selectin concentrations declined significantly with pioglitazone therapy, whereas ICAM-1 concentrations decreased significantly with glipizide therapy. (Endocr Pract. 2007;13:147-152)  相似文献   

6.
We have screened a subtracted cDNA library in order to identify differentially expressed genes in omental adipose tissue of human patients with Type 2 diabetes. One clone (#1738) showed a marked reduction in omental adipose tissue from patients with Type 2 diabetes. Sequencing and BLAST analysis revealed clone #1738 was the adipocyte-specific secreted protein gene apM1 (synonyms ACRP30, AdipoQ, GBP28). Consistent with the murine orthologue, apM1 mRNA was expressed in cultured human adipocytes and not in preadipocytes. Using RT-PCR we confirmed that apM1 mRNA levels were significantly reduced in omental adipose tissue of obese patients with Type 2 diabetes compared with lean and obese normoglycemic subjects. Although less pronounced, apM1 mRNA levels were reduced in subcutaneous adipose tissue of Type 2 diabetic patients. Whereas the biological function of apM1 is presently unknown, the tissue specific expression, structural similarities to TNFα and the dysregulated expression observed in obese Type 2 diabetic patients suggest that this factor may play a role in the pathogenesis of insulin resistance and Type 2 diabetes.  相似文献   

7.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

8.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

9.
《Endocrine practice》2016,22(11):1343-1346
Abbreviations:CHF = congestive heart failureGLP-1 RA = glucagon-like peptide-1 receptor agonistT2D = type 2 diabetesTZD = thiazolidinedione  相似文献   

10.
《Cell metabolism》2014,19(5):861-871
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

11.
Objectives: Fat in the lower body is not associated with the same risk of cardiovascular disease as fat in the upper body. Is this explained by differences in the physiological functioning of the two depots? This study had two objectives: 1) to determine whether fat mobilization and blood flow differ between gluteal and abdominal adipose tissues in humans, and 2) to develop a new technique to assess gluteal adipose tissue function directly. Research Methods and Procedures: We performed detailed in vivo studies of adipose tissue function involving the assessment of fat mobilization by measurement of adipose tissue blood flows, arterio‐venous differences of metabolites across each depot, and gene expression in tissue biopsies in a small‐scale physiological study. Results: Gluteal adipose tissue has a lower blood flow (67% lower, p < 0.05) and lower hormone‐sensitive lipase rate of action (87% lower, p < 0.05) than abdominal adipose tissue. Lipoprotein lipase rate of action and mRNA expression are not different between the depots. This is the first demonstration of a novel technique to directly investigate gluteal adipose tissue metabolism. Discussion: Direct assessment of fasting adipose tissue metabolism in defined depots show that the buttock is metabolically “silent” in terms of fatty acid release compared with the abdomen.  相似文献   

12.
Abdominal visceral tissue (VAT) and subcutaneous adipose tissue (SAT), comprised of superficial‐SAT (sSAT) and deep‐SAT (dSAT), are metabolically distinct. The antidiabetic agents thiazolidinediones (TZDs), in addition to their insulin‐sensitizing effects, redistribute SAT suggesting that TZD action involves adipose tissue depot‐specific regulation. We investigated the expression of proteins key to adipocyte metabolism on differentiated first passage (P1) preadipocytes treated with rosiglitazone, to establish a role for the diverse depots of abdominal adipose tissue in the insulin‐sensitizing effects of TZDs. Adipocytes and preadipocytes were isolated from sSAT, dSAT, and VAT samples obtained from eight normal subjects. Preadipocytes (P1) left untreated (U) or treated with a classic differentiation cocktail (DI) including rosiglitazone (DIR) for 9 days were evaluated for strata‐specific differences in differentiation including peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) and lipoprotein lipase (LPL) expression, insulin sensitivity via adiponectin and glucose transport‐4 (GLUT4), glucocorticoid metabolism with 11β‐hydroxysteroid dehydrogenase type‐1 (11βHSD1), and alterations in the adipokine leptin. While depot‐specific differences were absent with the classic differentiation cocktail, with rosiglitazone sSAT had the most potent response followed by dSAT, whereas VAT was resistant to differentiation. With rosiglitazone, universal strata effects were observed for PPAR‐γ, LPL, and leptin, with VAT in all cases expressing significantly lower basal expression levels. Clear dSAT‐specific changes were observed with decreased intracellular GLUT4. Specific sSAT alterations included decreased 11βHSD1 whereas secreted adiponectin was potently upregulated in sSAT with respect to dSAT and VAT. Overall, the subcompartments of SAT, sSAT, and dSAT, appear to participate in the metabolic changes that arise with rosiglitazone administration.  相似文献   

13.
Diacylglycerol acyltransferase (DGAT) could be a rate limiting step in triglyceride (TG) synthesis as it is the final step in this pathway. As such, between depot differences in DGAT activity could influence regional fat storage. DGAT activity and in vitro rates of direct free fatty acid (FFA) storage were measured in abdominal subcutaneous and omental adipose tissue samples from 12 nonobese (BMI <30 kg/m2) and 23 obese men and women (BMI >30 kg/m2) undergoing elective surgery. DGAT activity was greater in omental than in abdominal subcutaneous adipose tissue from nonobese patients (2.0 ± 0.9 vs. 0.9 ± 0.3 pmol/min/mg lipid, respectively, P = 0.003), but not from obese patients (1.4 ± 0.6 vs. 1.7 ± 0.7 pmol/min/mg lipid, respectively, P = 0.10). DGAT activity per unit adipose weight was negatively correlated with adipocyte size (P < 0.01) and positively correlated with direct FFA storage in omental (P < 0.001) but not in abdominal subcutaneous fat. Tissue DGAT activity varies as a function of adipocyte size, but this relationship differs between visceral and abdominal subcutaneous fat in obese and nonobese humans. Our results are consistent with the hypothesis that interindividual variations in DGAT activity may be an important regulatory step in visceral adipose tissue FFA uptake/storage.  相似文献   

14.
Objective: To determine the variation in preadipocyte isolation procedure and to assess the number and function of preadipocytes from subcutaneous and omental adipose tissue of obese individuals. Research Methods and Procedures: The preadipocyte number per gram of adipose tissue in the abdominal‐subcutaneous and abdominal‐omental adipose stores of 27 obese subjects with a BMI of 44 ± 10 kg/m2 and an age of 40 ± 9 years was determined. Results: The assessment of the preadipocyte number was found to be labor intensive and error prone. Our data indicated that the number of stromal vascular cells (SVCs), isolated from the adipose tissue by collagenase digestion, was dependent on the duration of collagenase treatment and the size and the origin of the biopsy. In addition, the fat accumulation and leptin production by differentiated SVCs were dependent on the number of adherent SVCs (aSVCs) in the culture plate and the presence of proteins derived from serum and peroxisome proliferator‐activated receptor ligands. Discussion: Using our standardized isolation and differentiation protocol, we found that the number of SVCs, aSVCs, leptin production, and fat accumulation still varied considerably among individuals. Interestingly, within individuals, the number of SVCs, aSVCs, and the leptin production by differentiating aSVCs from both the subcutaneous and the omental fat depots were associated, whereas fat accumulation was not. In obese to severely obese subjects, differences in BMI and age could not explain differences in SVCs, aSVCs, leptin production, and fat accumulation.  相似文献   

15.
Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT.  相似文献   

16.
Regional fat distribution rather than overall fat volume has been considered to be important to understanding the link between obesity and metabolic disorders. We aimed to evaluate the independent associations of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with metabolic risk factors in apparently healthy middle‐aged Japanese. Participants were 1,119 men and 854 women aged 38–60 years who were not taking medications for diabetes, hypertension, or dyslipidemia. VAT and SAT were measured by use of computed tomography (CT) scanning. VAT and SAT were significantly and positively correlated with each other in men (r = 0.531, P < 0.001) and women (r = 0.589, P < 0.001). In multiple regression analyses, either measure of abdominal adiposity (VAT or SAT) was positively associated with blood pressure, fasting plasma glucose, and log triglyceride (P < 0.001) and inversely with high‐density lipoprotein (HDL)‐cholesterol (P < 0.001). When VAT and SAT were simultaneously included in the model, the association of VAT with triglycerides was maintained (P < 0.001) but that of SAT was lost. The same was true for HDL‐cholesterol in women. For fasting plasma glucose, the association with VAT was strong (P < 0.001) and the borderline association with SAT was maintained (P = 0.060 in men and P = 0.020 in women). Both VAT and SAT were independently associated with blood pressure (P < 0.001). Further adjustment for anthropometric indices resulted in the independent association only with VAT for all risk factors. In conclusion, impacts of VAT and SAT differed among risk factors. VAT showed dominant impacts on triglyceride concentrations in both genders and on HDL‐cholesterol in women, while SAT also had an independent association with blood pressure.  相似文献   

17.
Objective: Abdominal subcutaneous adipose tissue (SAT) occurs in two depots separated by a fascial plane: deep SAT and superficial SAT. In a recent study it was demonstrated that the amount of deep SAT has a much stronger relationship to insulin resistance than does superficial SAT. Because insulin resistance may be related to fatty acid release from adipose tissue, we hypothesized that the two SAT depots may have a different lipolytic activity. Research Methods and Procedures: To test this hypothesis, we obtained samples of deep and superficial SAT from patients undergoing elective abdominal surgery. The rate of lipolysis was determined in the collagenase‐digested adipocytes obtained from the two fat depots by measuring glycerol release in the presence and absence of isoproterenol. In addition, the relative concentration of hormone‐sensitive lipase was determined in both SAT depots by Western blot analysis. Results: Our results showed that the rate of isoproterenol‐stimulated lipolysis was ~20% higher in cells from deep SAT compared with those from superficial SAT, indicating that the deep SAT is more lipolytically active. The concentration of hormone‐sensitive lipase did not differ between the two adipose tissue depots. Discussion: These findings suggest that the higher lipolytic activity of deep SAT may account for its stronger association with insulin resistance. The mechanism seems to be independent of differences in hormone‐sensitive lipase concentration.  相似文献   

18.
Objective: To compare ethnic differences in visceral adipose tissue (VAT), assessed by computed tomography, and type 2 diabetes risk among 55‐ to 80‐year‐old Filipino, African‐American, and white women without known cardiovascular disease. Research Methods and Procedures: Subjects were participants in the Rancho Bernardo Study (n = 196), the Filipino Women's Health Study (n = 181), and the Health Assessment Study of African‐American Women (n = 193). Glucose and anthropometric measurements were assessed between 1995 and 2002. Results: African‐American women had significantly higher age‐adjusted BMI (29.7 kg/m2) and waist girth (88.1 cm) compared with Filipino (BMI, 25.5 kg/m2; waist girth, 81.9 cm) or white (BMI: 26.0 kg/m2; waist girth: 80.7 cm) women. However, VAT was significantly higher among Filipino (69.1 cm3) compared with white (62.3 cm3; p = 0.037) or African‐American (57.5 cm3, p < 0.001) women. VAT correlated better with BMI (r = 0.69) and waist (r = 0.77) in whites, compared with Filipino (r = 0.42; r = 0.59) or African‐American (r = 0.50; r = 0.56) women. Age‐adjusted type 2 diabetes prevalence was significantly higher in Filipinas (32.1%) than in white (5.8%) or African‐American (12.1%) women. Filipinas had higher type 2 diabetes risk compared with African Americans [adjusted odds ratio, 2.30; 95% confidence interval (CI), 1.09 to 4.86] or whites (adjusted odds ratio, 7.51; 95% CI, 2.51 to 22.5) after adjusting for age, VAT, exercise, education, and alcohol intake. Discussion: VAT was highest among Filipinas despite similar BMI and waist circumference as whites. BMI and waist circumference were weaker estimates of VAT in Filipino and African‐American women than in whites. Type 2 diabetes prevalence was highest among Filipino women at every level of VAT, but VAT did not explain their elevated type 2 diabetes risk.  相似文献   

19.

Background

Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®), at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity.

Methodology/Principal Findings

Mice were fed either a control diet (CT), a high fat (HF) diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet) associated with white pepper (0.01 %) for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation.

Conclusions/Significance

These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.  相似文献   

20.

Context and Objective

Adipose tissue in insulin resistant subjects contains inflammatory cells and extracellular matrix components. This study examined adipose pathology of insulin resistant subjects who were treated with pioglitazone or fish oil.

Design, Setting and Participants

Adipose biopsies were examined from nine insulin resistant subjects before/after treatment with pioglitazone 45 mg/day for 12 weeks and also from 19 subjects who were treated with fish oil (1,860 mg EPA, 1,500 mg DHA daily). These studies were performed in a clinical research center setting.

Results

Pioglitazone treatment increased the cross-sectional area of adipocytes by 18% (p = 0.01), and also increased capillary density without affecting larger vessels. Pioglitazone treatment decreased total adipose macrophage number by 26%, with a 56% decrease in M1 macrophages and an increase in M2 macrophages. Mast cells were more abundant in obese versus lean subjects, and were decreased from 24 to 13 cells/mm2 (p = 0.02) in patients treated with pioglitazone, but not in subjects treated with FO. Although there were no changes in total collagen protein, pioglitazone increased the amount of elastin protein in adipose by 6-fold.

Conclusion

The PPARγ agonist pioglitazone increased adipocyte size yet improved other features of adipose, increasing capillary number and reducing mast cells and inflammatory macrophages. The increase in elastin may better permit adipocyte expansion without triggering cell necrosis and an inflammatory reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号